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Introduction

Smartphone permissions systems 
control access to private user data. [1,2]

Non-GPS sensors are not restricted.

The ad-tech industry builds individual 
profiles to better target ads [4] We 
explore methods to infer private data 
from these “benign” sensors.

Objectives

Research Question: Are sensor 
readings correlated with user traits? Is it 
sufficient for machine learning?

Methodology

Data Collection:
Population: MTURK, 1-week 
observation period, N = 100
Preprocess, segment, and classify

Preliminary Results
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Conclusion

Key Takeaways
• Sensors can correlate with one 

another under various activities

• Conditioned on events, inferences 
about the user can be made

• Needs further investigation to 
determine generalizability

Questions For Further Analysis
• For gender inference using 

walking motion, how stable are the 
features within genders and across 
different walking sessions?

• What are the best ways to 
preprocess, segment, and 
formulate features from rich 
sensor data for demographic 
classification?

• Are there systemic differences in 
handset sensor hardware that can 
bias data and resulting inferences? 
Can those be leveraged?
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Intuition on Sensor Measurements

• Motion sensor activity correlates with 
one another (e.g., step counter 
activity reflected in accelerometer)

• Sensor activity + times could indicate 
habits, changes in location, etc.

Walking Motion and Gender
• Intuition: Men and women store their 

phones differently when walking 
(e.g., side pocket vs. back pocket vs. 
hand bag)

• Intuition: Different storage will have 
distinct motion characteristics

• Step counter data used to condition 
accelerometer readings to walking

• Limited analysis shows possible 
distinguishable features in time and 
frequency domains

• Needs broader investigation and 
sensitivity analysis

Gender Weight Fitness Habits

Income level Height Work 
Schedule

Ground TruthSensor Data

0
5
10
15
20
25
30
35
40
45

21:38:22 21:38:22 21:38:23 21:38:24 21:38:25 21:38:26

Ac
ce
le
ro
m
et
er
	L2

	N
or
m
	(m

/s
2 )

Time

Female	Walking	(5	Second	Detail)

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Pe
ak
	A
m
pl
itu

de

Frequency	(Hz)

Female	Walking,	FFT	4096	Pts.	@	50Hz

0
5
10
15
20
25
30
35
40
45

10:15:10 10:15:10 10:15:11 10:15:12 10:15:13 10:15:14

Ac
ce
le
ro
m
et
er
	L2

	N
or
m
	(m

/s
2 )

Time

Male	Walking	(5	Second	Detail)

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Pe
ak
	A
m
pl
itu

de

Frequency	(Hz)

Male	Walking,	FFT	4096	Pts.	@	50Hz

Accelerometer Light
Sensors

Step
Counter

Proximity
Sensor Gyroscope

Contacts Photos &
Videos

Fine
Location

Call
Activity SMS


