Health Insurance Market Design

FTC Microeconomics Conference, November 2nd 2017

Igal Hendel (Northwestern University)

- Lots of interest has focused on creation and regulation of health insurance markets (exchanges)
 - Affordable Care Act (ACA) in United States (2010)
 - Netherlands (2006), Switzerland (1996), Private market in Germany
 - Private employer exchanges US
- This type of regulated insurance market, termed managed competition, characterized by:
 - Annual policies (in most cases)
 - "Free entry" of insurers
 - Pre-specified financial coverage levels plans can offer (60%, 70%, 80%, 90% in U.S.)
 - Minimum coverage (health conditions included)
 - Restrictions on pricing pre-existing conditions, demographics

Current Debate in Congress

- Ongoing work in US congress replacing the ACA
 - (some) relates to market rules
 - proposals by different Republicans
 - Better Way: Paul Ryan, Patient Care Act: Orrin Hatch, Empowering Patients First Act: Thomas Price, Health Care Choice Act: Ted Cruz, Healthcare Accessibility, Empowerment, and Liberty Act: William Cassidy and Peter Sessions
- All proposals include repealing participation mandate
 - mandate intended to prevent market unravelling
 - but perceived as infringing freedom
- Some proposals remove ban on pricing of pre-existing conditions

Main Economic Issues

- Market design (rules) needed to contend with two potential problems:
 - or two risks: i. type (conditions), ii. medical costs given type
- Reclassification risk (RR)
 - if health conditions priced
 - individuals face risk of changing health type
 - leading to potentially high premiums at bad times
- Adverse section (AS)
 - if charged average premiums, healthy individuals may opt out, leading to premium increase...
 - standard Akerlof lemons inefficiency
 - may even lead to the collapse of the market

Main Economic Issues

- Tension between: AS and RR
- AS can be contended with by pricing of health condition
 - individualized prices (rather than average) can eliminate adverse selection
 - less adverse selection, implies more trade, higher welfare
- But pricing health conditions leads to more premium uncertainty
 - exacerbating RR, lowers welfare
- Relates to notion of insurance
 - two risks

Main Economic Issues: Pricing Rules

- Market rules dictate extent of these concerns
- The Affordable Care Act (ACA) went to one extreme
 - banning pricing of health conditions, eliminating RR
- The potential costs of the ban is AS, in terms of:
 - low participation (mitigated by mandate) or
 - (if mandate effective) underinsurance (low coverage)
- Since pricing rules affect AS vs RR trade-off
- Policy question: how costly are AS and RR?
 - where in that trade-off is welfare highest?
 - answer depends on: preferences toward risk and transitions across health types (costs) over time

Main Economic Issues: Types of Contracts

- Most regulations stipulate one-year contracts
- Longer contracts, as in private German HI market, might improve welfare
- Long-term contracts might:
 - eliminating AS through health based pricing
 - while insuring RR through commitment to future policy terms
- Policy question: are long term contracts welfare improving?
 - answer depends on: preferences toward risk and transitions across health types (costs) over time

Main Economic Issues: Repeal and Replace

- All Republican proposals eliminate the mandate
 - there is no penalty for not participating
- Instead they propose:
 - penalties while returning to the market
 - House of Representatives bill: 30% penalty for non-continuous coverage
 - Senate bill penalizes with 6 months exclusion when back
- Both alternatives, to enhance participation, create dynamics:
 - although contracts are yearly
 - current consumer behavior affects future payoffs
 - thus, finding demand and equilibrium, entails a DP problem
- Policy question: which type of penalties performs better?
 - answer depends on: preferences toward risk and transitions across health types (costs) over time

Market Design

Data Requirements for Simulations

- One can simulate equilibria and compute welfare, in all 3 set -ups:
 - one period contracts with different pricing rules
 - one period contracts with rules generating demand dynamics
 - long term contracts
- Data needed:
 - distribution of health types ("health state")
 - distribution of costs given types
 - health state transitions (from year to year)
 - preferences toward risk (parameter)

Data

In the work I will discuss...

- Individual-level panel: provided by large employer (10k emp/25k covered lives) from 2004-2009
 - Plan choices, plan characteristics and consumer demographics
 - Medical claims data (ICD-9 codes) for every person covered in PPO (65%)
 - medical claims reflect health realizations
- Leveraged with: Adjusted Clinical Group (ACG) program:
 - software developed by Johns Hopkins Medical School
 - provides risk score conditional on previous medical claims (ICD-9 codes) and demographics
 - used by insurers for underwriting
 - ⇒we have access to the same information insurers do

Data

- We treat the large employer as the population in the exchange
- Having an ACG score for each person, we basically observe distribution of risk types
 - the distribution of types is data, rather than estimated
- Use ACG changes over time to estimate health transitions
- Estimate distribution of realized medical costs given ACG
 - reflects uncertainty faced by each type
- Risk preferences
 - Choice Model in Handel, Hendel, Whinston (2015)
 - Comparable choices in the literature: Collier et al. (2017)

From the Data to the Simulations

Ingredients

- For each person in population we know:
 - risk type (ACG)
 - estimated risk preference (CARA parameter)
 - estimated distribution of costs given ACG (uncertainty faced)
- With: type, uncertainty and risk preferences
 - compute expected utility from an insurance **policy** with Actuarial Value (**AV**) x: $EU_x(ACG)$
- Knowing expected utility, we get willingness to pay for any level of coverage as:
 - e.g., WTP for a 60% policy is: $\theta_{60} = EU_{60}(ACG) EU_{0}(ACG)$
- Compute WTP for every person in the population (given their ACG and age)
 - which represents demand for such policy

From the Data to the Simulations

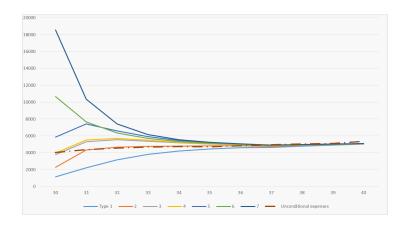
- ullet Final product is a population, with heta for every person and policy of interest
 - treats insurance policy as a financial asset
- Distribution of θ determines:
 - demand
 - costs (given premiums)
- With WTP of every person in population we can simulate
 - static contracts
 - long term contracts
 - dynamic consumer behavior

Population Health Costs

Sample Total Health Expenditure Statistics						
Ages	Mean	S. D.	S. D. of ACG	S. D. around ACG		
All	6,099	13,859	6,798	9,228		
25-30	3,112	9,069	4,918	5,017		
30-35	3,766	10,186	5,473	5,806		
35-40	4,219	10,753	5,304	6,751		
40-45	5,076	12,008	5,942	7,789		
45-50	6,370	14,095	6,874	9,670		
50-55	7,394	15,315	7,116	11,092		
55-60	9,175	17,165	7,414	13,393		
60-65	10,236	18,057	7,619	14,366		

Population Health States

AGE:			Health States:							
	1	2	3	4	5	6	7			
25-30	0.49	0.19	0.14	0.07	0.04	0.03	0.04			
30-35	0.41	0.18	0.13	0.08	0.06	0.06	0.07			
35-40	0.27	0.30	0.13	0.06	0.09	0.07	0.09			
40-45	0.19	0.28	0.16	0.09	0.12	0.08	0.10			
45-50	0.01	0.15	0.32	0.15	0.13	0.12	0.12			
50-55	0.00	0.10	0.25	0.19	0.15	0.16	0.15			
55-60	0.00	0.01	0.01	0.25	0.24	0.28	0.22			
60-65	0.00	0.00	0.00	0.18	0.24	0.26	0.31			


Health State Transitions: 30-35 year olds

					λ_{t+1}			
		1	2	3	4		6	7
	$\lambda_t = 1$	0.72	0.13	0.05	0.05	0.02	0.01	0.03
	$\lambda_t = 2$	0.35	0.25	0.12	0.11	0.04	0.03	0.11
λ_t	$\lambda_t = 3$	0.15	0.23	0.19	0.15	0.10	0.08	0.10
	$\lambda_t = 4$	0.20	0.08	0.12	0.24	0.18	0.12	0.08
	$\lambda_t = 5$	0.10	0.10	0.05	0.20	0.20	0.20	0.15
	$\lambda_t = 6$	0.16	0.11	0.14	0.11	0.08	0.22	0.19
	$\lambda_t = 7$	0.11	0.11	0.07	0.04	0.11	0.20	0.37

Health State Transitions: 50-55 year olds

					λ_{t+1}			
		1	2	3	4	5	6	7
	$\lambda_t = 1$	0.67	0.15	0.10	0.02	0.02	0.01	0.03
	$\lambda_t = 2$	0.25	0.37	0.20	0.09	0.04	0.02	0.04
λ_t	$\lambda_t = 3$	0.09	0.21	0.21	0.20	0.12	0.10	0.08
	$\lambda_t = 4$	0.10	0.19	0.26	0.12	0.10	0.19	0.05
	$\lambda_t = 5$	0.09	0.19	0.14	0.15	0.10	0.19	0.15
	$\lambda_t = 6$	0.00	0.09	0.13	0.09	0.19	0.23	0.28
	$\lambda_t = 7$	0.03	0.10	0.10	0.10	0.21	0.16	0.29

Health State Persistence starting at age 30

From the Theory to the Simulations

Solution Concepts

- We need a solution concept to predict outcomes under different market rules
- For example, in the context of static contracts we used Riley equilibrium
 - think of breaking-even premiums
- In the context of long term contracts, we find competitive equilibria
 - optimal contracts subject to break even and lapsation constraints

PART I

One-period Contracts: Pricing Rules

Part I: One-Period Contracts

Handel, Hendel and Whinston (2015)

- We find that markets fully unravel if only age is priced
 - like in the ACA
- We estimated: cost of AS (namely, of underinsurance) under Obamacare (ACA) is about \$600 per person/year
- If health conditions are priced
 - trade increases, some individuals get high level of coverage (90% Actuarial Value)
 - so AS is reduced (but in a very limited way)
- Downside: premiums become uncertain (over time), creating RR
 - although AS is reduced, welfare declines as more conditional priced
 - we find the risk associated with uncertain premium is a lot more costly
- Take away: ACA did well banning pricing of health conditions
 - less costly to suffer AS than RR

Part I: One-Period Contracts

Handel, Hendel and Whinston (2015)

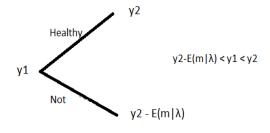
	Q1	Q2	Q3	Q4
Ages	Share 90	Share 90	Share 90	Share 90
All	35.2	0	0	0
25-29	63	25	0	0
30-34	63	42	0	0
35-39	52	50	0	0
40-44	38	0	0	0
45-49	63	18	0	0
50-54	27	0	0	0
55-59	33	0	0	0
60-65	0	0	0	0

PART II

Long-Term Contracts

Part II: Long Term contracts: One Sided Commitment Handel, Hendel and Whinston (2017)

- Firms can offer long term contracts
 - like in German private health insurance market or US life insurance
- Consumers can lapse any time, without termination fees
- Competitive equilibrium maximizes consumer welfare, breaking even ex-ante
 - offering contracts that are "lapsation-proof"


Part II: Long Term contracts: One Sided Commitment

Why one sided commitment?

- Legal reasons only one-sided feasible
- Why is it an interesting case?
 - first impression is that, when insurers can commit they will promise coverage to fully insure risk of developing a condition
 - solving reclassification risk concern
 - why wouldn't they fully insure risk averse buyers if they can commit to do so?
- Turns out: consumer inability to commit compromises insurance
 - we can see it in the simplest set-up in next figure

Simplest Example

One Sided Commitment: 2 periods, 2 (second period) states

Model

Handel, Hendel and Whinston (2017): Set up

- ullet T periods, $U=\mathbb{E}\left[\sum_t \delta^t u(c_t)
 ight]$
 - T = 40, from age 25 to 65 (Medicare)
- Individual income in period t: y_t
- ullet Health state λ_t (ACG), summarizes expected health costs, $\mathbb{E}[m_t|\lambda_t]$
- ullet Health expenses m_t and λ_{t+1} determined by density $f_t(m_t,\lambda_{t+1}|\lambda_t)$
 - the transitions just showed you
- Symmetric learning:
 - ullet m_t and λ_t observed by consumers and firms
- We assume industry is competitive, firms risk neutral, discount factor δ , capital market frictions

Health State Transitions: 30-35 year olds

					λ_{t+1}			
		1	2	3	4		6	7
	$\lambda_t = 1$	0.72	0.13	0.05	0.05	0.02	0.01	0.03
	$\lambda_t = 2$	0.35	0.25	0.12	0.11	0.04	0.03	0.11
λ_t	$\lambda_t = 3$	0.15	0.23	0.19	0.15	0.10	0.08	0.10
	$\lambda_t = 4$	0.20	0.08	0.12	0.24	0.18	0.12	0.08
	$\lambda_t = 5$	0.10	0.10	0.05	0.20	0.20	0.20	0.15
	$\lambda_t = 6$	0.16	0.11	0.14	0.11	0.08	0.22	0.19
	$\lambda_t = 7$	0.11	0.11	0.07	0.04	0.11	0.20	0.37

Equilibrium Contracts

Predictions

- Optimal contract offers a minimum guaranteed consumption level
- Guarantee is bumped up to match outside offers after good news
- New guaranteed consumption level is the first-period consumption of an optimal contract that would start at that date and state λ_t
- Optimal contracts equate u'(c) only across states with no outside offers (bad states)
- Consumption guarantee parallels downward rigid wages in Harris and Holmstrom (1982)

Elements from Data

Simulating Equilibrium Contracts and Welfare

- The key ingredients are: health status and transitions over time, risk preferences
- Age dependent annual transitions across a 7 health-state partition (using 5-year bins)
- We use estimated risk preferences from HHW (2015) choice model: CARA with population mean $\gamma_i=4.39*10^{-4}$
- $\delta = 0.975$

• With those parameters, find optimal contracts, and welfare

Results: Welfare

- For each contracting scenario X and income profile we find a constant certainty equivalent CE_X
 - $C_{NR}^{*\square}=$ full insurance of m and λ (medical and RR), no borrowing
 - CE_S = unregulated market (health conditions priced)
 - CE_D = dynamic contracts (one-sided commitment)
 - $CE_{ACA} = ACA (60\% \text{ coverage policies with deductible and OOP max})$

• CE_X = dollar equivalent of utility in regime x

Risk Aversion:

CARA coeff 0.00008

	Certainty Equivalent					
Income	$C_{NB}^{*\square}$	CE_S	CE_D	CE_{ACA}		
Flat-net	53.67	52.47	53.62	52.85		
Manager	47.20	46.41	46.94	46.80		

Switching Costs

Welfare Impact: CARA coeff 0.0004

Switching Cost	Flat-net	Manager
D	52.76	34.10
1,000	52.95	34.95
5, 000	53.39	36.92
10,000	53.58	38.82
$C^{*\square}$	53.67	37.93

PART III

One-period contracts: Republican's Reform

Part III: Republican Reform

Static Contracts with Consumer Dynamics

- Ghili, Hendel and Whinston (2017) go back to static contracts
 - firms offer one-period contracts
 - with no pricing of health conditions
 - but penalties for lack of continuous coverage
- Simulate:
 - House of Representatives proposal: 30% premium increase for returning buyers
 - Senate proposal: 6 months without coverage, $EU_0(ACG)$
- Unlike the mandate, both options generate consumer dynamics

Part III:

Consumer Problem

- Given a vector of premiums $\mathbf{p} = \{p_a\}$ for ages a = 25, ..., 64.
- The value for an age a consumer with current type λ (ACG) is:

$$\begin{array}{lcl} V_{a}(\lambda,\gamma,0|\mathbf{p}) & = & \max\{\; E_{0}(u_{\gamma}(c)|\lambda) - \phi_{0} + \beta E(V_{a+1}(\lambda'_{\cdot},\gamma,0|\mathbf{p})|\lambda) \;, \\ & & E_{H}(u_{\gamma}(c)|\lambda) - p_{a} - \phi_{R} + \beta E(V_{a+1}(\lambda'_{\cdot},\gamma,1|\mathbf{p})|\lambda) \;\} \end{array}$$

and

$$V_{a}(\lambda, \gamma, 1|\mathbf{p}) = \max\{ \mathbb{E}_{0}(u_{\gamma}(c)|\lambda) - \phi_{0} + \beta E(V_{a+1}(\lambda'_{,}^{\square}\gamma, 0|\mathbf{p})|\lambda) ,$$

$$E_{H}(u_{\gamma}(c)|\lambda) - p_{a} + \beta E(V_{a+1}(\lambda'_{,}^{\square}\gamma, 1|\mathbf{p})|\lambda) \} \square$$

- •
- where $E(V_{a+1}(\lambda'_{-}^{\square}\gamma, 1|\mathbf{p})|\lambda)$ is the expectation wrt future type λ'^{\square} given current type λ .
- $\chi = 0$ means out of market, 1 = in.
- $oldsymbol{\phi}$ is the penalty for returning to the market

Part III:

Equilibrium premiums

- For a given \mathbf{p} we find $V_a(\lambda, \chi | \mathbf{p})$
- $V_a(\lambda,\chi|\mathbf{p})$ and \mathbf{p} determine participation and insurer's cost for every a
- Update **p** such that insurers break for every a
- Update $V_a(\lambda, \chi | \mathbf{p})$ for new \mathbf{p}
- Iterate
 - not a contraction, need not converge, it did so far
- Equilibrium involves: consumers optimizing and firms breaking even

Part III:

Equilibrium Participation: Preliminary Numbers

	Static, penalty =		House	Senate
Age	\$0	\$400	30%	Year out
25 – 29	0.17	0.18	0.19	1.00
30 – 34	0.20	0.20	0.21	1.00
35 – 39	0.28	0.28	0.30	1.00
40 — 44	0.32	0.33	0.34	1.00
45 — 49	0.37	0.37	0.39	1.00
50 — 54	0.44	0.44	0.47	0.99
55 — 59	0.48	0.48	0.51	0.97
60 — 64	0.57	0.57	0.59	0.75

Concluding Remarks

- Plenty can be simulated
- Treating health insurance policies as financial instruments
 - non-financial components can be accommodated
- Using data firms are increasingly willing to share (e.g., Alcoa, Microsoft)
- Ideally, governments would be willing to collect and share
- ACG software extremely useful
 - replacing parametric assumptions in prior literature with data
 - same data/information used by market participants