Certification, Reputation and Entry: An Empirical Analysis

Xiang Hui¹ Maryam Saeedi² Giancarlo Spagnolo³ Steve Tadelis⁴

 $^1\mathrm{MIT}\text{-}\mathrm{Sloan} \qquad ^2\mathrm{CMU}\text{-}\mathrm{Tepper} \qquad ^3\mathrm{SITE} \qquad ^4\mathrm{UC}\text{-}\mathrm{Berkeley}$

October 30, 2017

Hui, Saeedi, Spagnolo, Tadelis

Asymmetric Information in Markets

- Sellers often have better info about product quality than buyers.
 - $\circ~$ eBay sellers: product condition
 - $\circ~$ Airbnb hosts: noise level of the neighborhood
 - $\circ~$ Upwork freelancers: knowledge and experience
 - $\circ\,$ procurement contractors: quality of their work
- This may result in inefficiently low-quality sellers in markets (Akerlof, 1970).

Asymmetric Information in Markets

- Sellers often have better info about product quality than buyers.
 - $\circ~$ eBay sellers: product condition
 - Airbnb hosts: noise level of the neighborhood
 - $\circ~$ Upwork free lancers: knowledge and experience
 - $\circ~$ procurement contractors: quality of their work
- This may result in inefficiently low-quality sellers in markets (Akerlof, 1970).
- A common solution in markets: Reputation Mechanisms
 - $\circ~$ e.g., eBay's Feedback System, followed by most market places
 - $\circ~$ Better Business Bureau records
 - $\circ~$ Yelp reviews
- How else can asymmetric information be mitigated?

Hui, Saeedi, Spagnolo, Tadelis

Badges and Certification

- One standard solution: Certification
 - e.g., licensing for service providers (also barrier...)
 - Marketplace can use data/process to certify quality

Badges and Certification

- One standard solution: Certification
 - e.g., licensing for service providers (also barrier...)
 - $\circ~$ Market place can use data/process to certify quality
- Badges identify sellers who meet minimum quality thresholds

• Buyers can identify who "passes the bar"

Badges in Search Results: eBay

	Apple iPod 8gb Touch 2n: gen - Sealed / Apple warranty	Top-rated P	3 Buy It Now
	In stock and ready for dispatch by next day delivery! Item: 250521403533 Seller User ID: windsorsal		
20 ¹⁰	Apple iPod nano 2nd Generation (PRODUCT) RED™ Specia	P	4 Bids
	FAULTY APPLE IPOD 8gb Bargaiiiin1111 Item: 130339299510 Seller User ID: anis1471		
50	APPLE iPod 1GB SHUFFLE BLUE 3RD GEN. GRADE A	Top-rated P	3 Buy It Now
	Fast shipping and Minimum 60 day warrantyi Itemi 260498178029 Seller User IDi windsorsal		

This Paper

- Badges pro: mitigates asymmetric information
- Badges con: can be a barrier for entry
- What will be the effects of a higher certification Bar?
 Incentives of new sellers to enter the market?
 Quality distribution of sellers in the market?
- We study a policy change on eBay to answer these questions

Related Literature

- Elfenbein, Fisman and McManus (2015)
 - Study value of a certification badge across different markets among different types of sellers
 - Certification provides more value when the number of certified sellers is low and when markets are more competitive
 - $\circ~$ We focus on change in standard and market outcomes
- Klein, Lambert & Stahl (2016); Hui, Saeedi & Sundaresan (2017)
 - $\circ~$ Exploited a different policy change on eBay: One sided feedback
 - $\circ~$ Klein et al.: clever DiD with scraped data looks like moral hazard
 - $\circ~$ Hui et al.: use internal data to show about 70% adverse selection
 - $\circ~$ Our results more consistent with AS than MH

Guiding Framework

Hui, Saeedi, Spagnolo, Tadelis

- Competitive market for goods (eBay...)
- Firms differ in two dimensions
 - Quality $z \in \{z_1, z_2, z_3\}, z_1 < z_2 < z_3$, with mass m_1, m_2, m_3
 - Entry costs f, independently distributed ~ G(f)

- Competitive market for goods (eBay...)
- Firms differ in two dimensions
 - Quality $z \in \{z_1, z_2, z_3\}, z_1 < z_2 < z_3$, with mass m_1, m_2, m_3
 - Entry costs f, independently distributed ~ G(f)
- Market has observable certification badge
 - $\circ~$ Signals if the quality is weakly above a threshold z^*

- Competitive market for goods (eBay...)
- Firms differ in two dimensions
 - Quality $z \in \{z_1, z_2, z_3\}, z_1 < z_2 < z_3$, with mass m_1, m_2, m_3
 - Entry costs f, independently distributed ~ G(f)
- Market has observable certification badge
 - $\circ~$ Signals if the quality is weakly above a threshold z^*
- Baseline demand function (lowest quality): P(Q).
- Demand for a good with expected quality \bar{z} : $P(Q) + \bar{z}$.

• Policy Change: $z^* = z_2 \implies z^* = z_3$

• Policy Change: $z^* = z_2 \implies z^* = z_3$

$$Z_1 \qquad Z_2 \qquad Z_3 \qquad \Rightarrow \qquad Z_1 \qquad Z_2 \qquad Z_3$$

- Effect on entry depends on changes in prices
- For z_2 types:
 - $\circ~$ Lower price
 - Unable to get badged any more
 - $\circ \ \Rightarrow {\rm Less \ entry}$
- For z_3 and z_1 types:
 - Price for at least one of z_3 and z_1 increases, possibly both
 - z_3 type: Able to get more informative badge
 - z_1 type: Pooled with better sellers
 - $\circ \Rightarrow$ More entry of z_3 (z_1) if the price for z_3 (z_1) increases

Hui, Saeedi, Spagnolo, Tadelis

Data

Hui, Saeedi, Spagnolo, Tadelis

Data

- Proprietary data from eBay
- Information on product attributes, listing features, buyer history, and seller feedback and reputation.
- eBay product catalog:
 - 400+ sub-categories that are exhaustive, e.g., Fiction & Literature, and Fresh Cut Flowers.
 - Product IDs for homogeneous goods, e.g., iPhone 6, Black, 32GB, Unlocked.
- Data on sellers' first listing date

Policy Change

- eBay switched from Powerseller to the eTRS badge in Sept 2009
- Certification requirements more stringent
 - \circ eTRS = Powerseller + other more stringent requirements
 - $\circ~$ Powerseller badge became obsolete

Change in Share of Badged Sellers

Hui, Saeedi, Spagnolo, Tadelis

- We use a two-stage approach
- First stage:

Estimate impact on share of badged sellers in each category c:

 $Share_Badged_{ct} = \frac{\beta_c}{Policy} + \eta_c + \alpha_c t + \epsilon_{ct},$

- We use a two-stage approach
- First stage:

Estimate impact on share of badged sellers in each category c:

$$Share_Badged_{ct} = \frac{\beta_c}{Policy} + \eta_c + \alpha_c t + \epsilon_{ct},$$

- Identification:
 - Policy change was "one size fits all"
 - Different markets will be affected differentially
 - Assume differential impact is exogenous (Run placebo test)

• Second stage:

Difference-in-difference approach (%-interaction for treatment)

▶ Robustness

$$Y_{ct} = \gamma \widehat{\beta_c} Policy + \mu_c + \xi_t + \epsilon_{ct},$$

- Y_{ct} : Various variables of interest:
 - $\circ~$ Number of entrants
 - Quality and performance of entrants
 - Quality of incumbents

First Stage Estimates

Distribution of β_c

- Lots of variation across markets (subcategories)
- Second stage uses this variation to identify differential impact

Results: Entrants

Hui, Saeedi, Spagnolo, Tadelis

Effect on Number of Entrants

$$Y_{ct} = \gamma \widehat{\beta_c} Policy + \mu_c + \xi_t + \epsilon_{ct},$$

- Entrant ratio = # entrants at t / # sellers at t 1
- $\gamma < 0$: more entrants in more affected categories. ($\hat{\beta}_c < 0$)
- Over time entry seems to converge to new equilibrium

Dependent Variable: Entrant Ratio					
	(1)	(2)	(3)		
	+/- 3 Months	+/-6 Months	Month 7 to 12		
γ	-0.299***	-0.204***	-0.047		
	(0.041)	(0.027)	(0.051)		
R^2	0.913	0.889	0.691		

Hui, Saeedi, Spagnolo, Tadelis

Effect on Quality of Entrants ____

- EPP = No. of positive feedback / No. of transactions
 - Effective Positive Percentage
 - Nosko, Tadels (2015)

Dependent Variable: EPP Conditional on Survival in the Second Year

	6-Month Window	12-Month Window	Month 7 to 12
γ	-0.102***	-0.066***	-0.062**
	(0.034)	(0.023)	(0.026)
R^2	0.758	0.717	0.690

• On average higher quality entrants enter in more affected categories

Distribution of Entrants' Quality

- Last exercise shows
 - $\circ~$ More affected categories: higher average quality of entrants

Distribution of Entrants' Quality

- Last exercise shows
 - More affected categories: higher average quality of entrants
- What is the effect on the distribution of entrants?
- Divide entrants in each subcategory into deciles based on EPP in the first year after entry
- For each decile, perform the DiD.

$$Y_{ct}^{decile} = \gamma \widehat{\beta_c} Policy + \mu_c + \xi_t + \epsilon_{ct},$$

Distribution of Entrants' Quality, Fatter Tails

Distribution of Entrants' Quality, Fatter Tails

• Decile 10: highest quality entrants

 $\circ~$ Negative coefficient: Higher EPP in more affected markets

Distribution of Entrants' Quality, Fatter Tails

• Decile 10: highest quality entrants

• Negative coefficient: Higher EPP in more affected markets

- Decile 1: lowest quality entrants
 - $\circ~$ Positive coefficient: Lower EPP in more affected markets

Hui, Saeedi, Spagnolo, Tadelis

Results: Incumbents

Hui, Saeedi, Spagnolo, Tadelis

Response of Incumbents?

EPP, Entrants Vs. Incumbents

Incumbents by Quality Quartile

Effect on Price and Market Share by Group

- For each group BB, BN, NB, and NN
 - Relative Price:= listing price/product value
 - Product value = average price of the product in posted price format
 - $\circ~$ Sales probability
 - Sales quantity
 - Market Share
- Changes in magnitude: NB(+) > BB(+) > NN(+) > BN(-)

Effect on Price and Market Share by Group

	(1)	(2)	(3)	(4)
	Relative Price	Sales Probability	Sales Quantity	Market Share
Policy	-0.003	0.015^{***}	0.009	-1.5E-07(-2%)
	(0.003)	(0.001)	(0.006)	(1.4E-06)
BB*Policy	-0.003	0.024^{***}	0.032^{***}	6.2E-06***(15%)
	(0.003)	(0.001)	(0.005)	(2.2E-06)
BN*Policy	-0.007***	-0.001***	-0.010***	-3.3E-06*(-6%)
	(0.002)	(4.E-04)	(0.004)	(1.8E-06)
NB*Policy	0.001	0.097^{***}	0.221^{***}	1.8E-06(13%)
	(0.012)	(0.003)	(0.026)	(4.1E-06)
Seller FE	\checkmark	\checkmark	\checkmark	\checkmark
Week FE	\checkmark	\checkmark	\checkmark	\checkmark
R^2	0.288	0.808	0.862	0.813

Table 3: Change in Badge Premium

Robustness Analyses

Hui, Saeedi, Spagnolo, Tadelis

Subcategory Heterogeneity

- Concern: Results driven by serially-correlated subcategory heterogeneity that simultaneously correlates with $\hat{\beta}_c$ and Y_{ct} .
- Assuming this confounding correlation persists over time, we should see that $\hat{\beta}_c$ can explain variations in entry in the past.
- Placebo test:
 - $\circ~$ Use $\widehat{\beta_c}$ estimated from the policy year
 - $\circ~$ DiD re-estimated using data around September in the previous year.
 - No statistically significant coefficient for entrant ratio, quality, or their size.
 - Not a proof but reassuring Go back

Two Types of Market Entrants

- New sellers Vs. existing sellers entering new subcategories
- Consistent with differential entry costs

	New Sellers		Existing Sellers	
Panel A. Entrant Ratio				
	(1)	(2)	(3)	(4)
	+/-3 Months	+/-6 Months	+/-3 Months	+/-6 Months
Estimate	-0.057***	-0.041***	-0.295***	-0.215***
	(0.012)	(0.007)	(0.042)	(0.028)
R^2	0.887	0.898	0.890	0.912
Panel B. EPP				
	(1)	(2)	(3)	(4)
	+/-3 Months	+/-6 Months	+/-3 Months	+/-6 Months
Estimate	-0.559***	-0.123*	-0.144***	-0.093***
	(0.123)	(0.074)	(0.037)	(0.024)
R^2	0.309	0.418	0.706	0.733

Table 5: Two Types of Entry

Hui, Saeedi, Spagnolo, Tadelis

Econometric Specification

- Check robustness of the first stage β_c
 - $\circ~$ Use number of badged sellers instead of share
 - Use immediate drop in share of badged sellers in the week before and the week after the policy change
 - $\circ~$ Use different time windows for estimation.
- Check robustness of the second stage β_c
 - $\circ~$ Use number of entrants instead of entrant ratio
 - $\circ~$ Use percentiles of $\widehat{\beta_c}$ across subcategories for DiD analyses
 - $\circ~$ Different quality measures and time windows for defining EPP

Other Robustness Analyses

- Price and market share regressions with different types of listings
- Exit behavior of incumbents
 - $\circ~$ The distribution of the quality of exits have thinner tails
 - $\circ~$ Sellers in the BN group shrink in their market share

Conclusion

- How does more demanding certification affect entry?
- In more affected markets,
 - $\circ~{\rm More~entrants}$
 - $\circ~$ Higher quality with fatter tails
 - $\circ~$ Quality change from improved selection
- Managerial implications for digital platforms
 - $\circ~$ Certification policies can affect rate and quality of entry
 - Innovation, e.g., Kickstarter

Project We Love

 $\circ~$ Ceritification policies seem more effective in affecting selection.

Thank You!

Hui, Saeedi, Spagnolo, Tadelis