# Contracting, Exclusivity and the Formation of Supply Networks with Downstream Competition

Paolo Ramezzana

Federal Trade Commission

November 2, 2017

Disclaimer:

Any opinions expressed in this presentation are mine alone and do not represent those of the Federal Trade Commission or its Commissioners

# Many markets work approximately like this



#### In some markets, all supply links are active



Examples:

Big-box stores (e.g., Best Buy, Target); online retailers (e.g., Amazon); online travel agents (e.g., Expedia, Travelocity)

#### In other markets, some degree of exclusivity



Examples:

Smartphones until a few years ago (e.g., iPhone - AT&T 2007-2011); sport events on pay TV; restricted networks in healthcare.

Automobile distribution in the U.S. (no contractual exclusivity)

# Research questions

- What types of supply networks maximize industry profits and consumer welfare?
- What types of equilibrium supply networks arise from decentralized contracting?
- Model of bilateral contracting with transfers. Combines literatures on
  - Network formation with transfers (Bloch and Jackson, 2007)
  - Vertical contracting (O'Brien and Shaffer, 1992; McAfee and Schwartz, 1994; Bernheim and Whinston, 1998)
- Factors affecting equilibrium structure of supply networks include
  - Degree of supplier and retailer differentiation
  - Mode of downstream competition
  - Availability of exclusive contracts
  - Firm's (in)ability to commit publicly to terms of contracts

### Why not use "Nash-in-Nash" bargaining?

- Horn and Wolinsky (1988), Crawford and Yurukoglu (2012), Gowrisankaran, Nevo and Town (2015)
- Theory: Collard-Wexler, Gowrisankaran and Lee (2017)
- Focuses more on division of surplus than on structure of contracts and networks
- "Contract equilibrium" approach: firms modify only one contract at a time



- Assumes that each link in a (given) network yields gains from trade
  - Only possible equilibrium outcome has all links active
- Simplifies structure of vertical contracts
  - Only lump-sum payments or only linear prices

# My approach

- Advantages over Nash-in-Nash
  - Allows firms to optimize across *all* their bilateral relations at the same time
  - Allows firms to use nonlinear contracts
  - Allows firms to enter into (and compete for) exclusives
  - Determines structure of supply networks endogenously
- Drawbacks relative to Nash-in-Nash
  - Yields less precise predictions about division of surplus

# Model

- $S \ge 2$  suppliers (indexed by s) and  $R \ge 2$  retailers (indexed by r)
  - S imes R differentiated "products" with quantity  $q_{sr}$  and retail price  $p_{sr}$
- Two stages
  - t = 1: Simultaneous contracting without public commitment
  - t = 2: Downstream competition (Bertrand or Cournot)
- At t = 1, each firm *i* submits a proposal  $x_i^j = \left\langle t_i^j, w_i^j, \theta_i^j \right\rangle$  to each firm *j* 
  - $t_i^j \gtrsim 0$  upfront transfer to be paid by retailer to supplier
  - $w_i^j \ge 0$  unit wholesale price
  - $\theta_i^j$  exclusivity clauses (if any)
- If proposals are consistent (i.e.,  $w_r^s = w_s^r$ ,  $\theta_r^s = \theta_s^r$  and  $t_r^s \ge t_s^r$ ), then s and r enter into a contract and a supply link is formed,  $\ell_{sr} = 1$ .

# Equilibrium concept

- $\bullet$  Vertical and horizontal coordination failures  $\Rightarrow$  many Nash equilibria with different networks and wholesale prices
- Coalition-proof Nash equilibrium (Bernheim, Peleg and Whinston, 1987)
  - Nonbinding pre-play communication. Agreements must be incentive compatible (no enforceable collusion)
  - Equilibrium must be immune to deviations that leave all members of any feasible coalition better off
  - Deviations must themselves be immune to further deviations by any feasible subcoalition (i.e., must be self enforcing)
  - ... and so on ...

#### Model solved in two steps

- For any network g, find self-enforcing profile of wholesale prices w(g)
  - Without public commitment  $\Rightarrow$  opportunism  $\Rightarrow$  w (g) = c
- A network g is an equilibrium if ∃ transfers t<sup>g</sup> such that ∄ profitable and self-enforcing deviations to any network h ≠ g
- Deviation from network g to network h is profitable for coalition Z iff

$$\underbrace{\sum_{r \in Z} \left[ \Pi_{r}^{h} - \Pi_{r}^{g} \right]}_{\text{Gain in gross}} > \underbrace{\sum_{s \in Z} \sum_{r \notin Z} \left( \ell_{sr}^{g} - \ell_{sr}^{h} \right) t_{sr}^{g}}_{\text{Change in transfers}} - \underbrace{\sum_{r \in Z} \sum_{s \notin Z} \left( \ell_{sr}^{g} - \ell_{sr}^{h} \right) t_{sr}^{g}}_{\text{Change in transfers}}$$

Algorithm to check whether profitable deviations are self enforcing

$$\langle g, t^g \rangle \rightarrow \langle h, t^h(t^g) \rangle \rightarrow \langle k, t^k(t^h(t^g)) \rangle \rightarrow \dots$$

### Bilateral duopoly with linear demand

#### Possible supply networks in bilateral duopoly



### Consumer demand

Inverse demand for product s at retailer r

$$p_{sr} = v - (q_{sr} + aq_{s'r}) - b(q_{sr'} + aq_{s'r'})$$

- $a \in [0, 1]$  product substitutability
- $b \in [0, 1]$  retailer substitutability



#### Networks that maximize industry profits



### Equilibrium networks without exclusive contracts

# Equilibrium networks without exclusive contracts: Cournot



# Equilibrium networks without exclusive contracts: Bertrand



# Equilibrium networks with exclusive contracts

# Adapting the framework to exclusive contracts

- A given network can be implemented with or without exclusive contracts
- However, exclusive contracts change feasibility/profitability of deviations
  - Force firms that want to add a link to renegotiate their existing exclusive contracts (or drop those contracts altogether)
- Assumption: Equilibrium networks are implemented by the most restrictive combination of exclusive contracts compatible with that network.
  - No assumption is necessary for deviations
- Assumption to rule out the exclusion of firms through "bait-and-switch" strategies

#### Networks that maximize industry profits



#### Equilibrium networks with exclusive contracts



#### Equilibrium networks with exclusive contracts



### Exclusive contracts reduce welfare

Whenever exclusive contracts are adopted and affect equilibrium supply networks, they reduce consumer and overall welfare

- Less variety
- Higher prices

# Exclusive contracts affect distribution of profits

- $t^g \in [\underline{t}^g, \overline{t}^g]$ 
  - $\underline{t}^{g}$  increasing in outside options (i.e., credible deviations) of suppliers
  - $\bar{t}^g$  decreasing in outside options (i.e., credible deviations) of retailers
- Exclusive contracts change outside options  $\to$  affect  $[\underline{t}^g,\overline{t}^g]$  even when not adopted in equilibrium
  - Improve suppliers' outside options by more than retailers' outside options
  - Make suppliers unambiguously better off and retailers unambiguously worse off
- Mechanism:
  - Similar to Bernheim and Whinston (1998)
  - Different from Ho and Lee (2017) and Liebman (2016)

### Ex-post bargaining and hold-up yield narrower networks

- Lee and Fong (2013) and Rey and Vergé (2016)
  - Firms first form links (without transfers), then (Nash) bargain over terms
  - Bargaining takes place under hold-up
- $\bullet\,$  Hold-up reduces profitability of adding links  $\rightarrow\,$  networks tend to be narrower



- Limitations of ex-post bargaining approach
  - Less realistic in markets with large firms (e.g., iPhone deal)
  - Not well suited to studying exclusive contracts.

# Conclusion

- New way of looking at contracting in bilateral oligopoly
- Identifies some important factors affecting structure of supply networks
- Focuses more on structure of contracts and networks than division of surplus
- Possible next steps
  - More work on division of surplus, possibly with empirical implementations
  - Study markets with some public commitment (ongoing)