Advertising and Demand for Addictive Goods: The Effects of E-Cigarette Advertising

Anna Tuchman

Northwestern University - Kellogg

FTC Microeconomics Conference November 2016

# What Are E-Cigarettes? Why Study This Industry?



- 4 同 6 4 日 6 4 日 6

## **Research Questions**

- 1. What is the effect of e-cigarette advertising on demand for cigarettes?
  - Direct: advertising spillovers?
  - Indirect: substitutes or complements?
- 2. What would be the impact of banning e-cigarette advertising?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のなの

# Ad Spillovers - Renormalization & Visual Smoking Cues



イロト (部) イモト (モ) 通言 ぶんで

## Product Complementarities - Indoor Use





## Overview of Empirical Analyses

1. Descriptive analysis

Market data: identification of ad effects Household data: addiction and substitution patterns

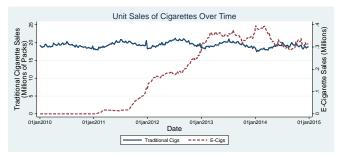
2. Structural demand model

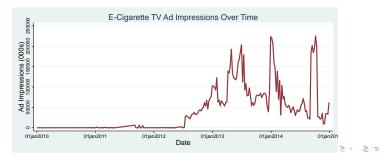
Both market and household data

3. Counterfactual analysis: e-cigarette ad ban

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のなの

Data Description - Aggregate and Household-Level Data


Nielsen Advertising Data


Weekly DMA-level TV ad impressions and GRPs 2009-2014

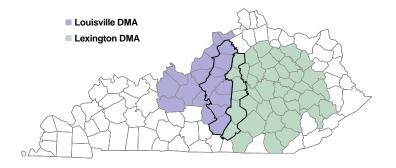
Nielsen Purchase Data

Weekly store sales volume and prices Daily household purchase panel 2010-2014

## Data - Aggregate Trends in Sales and Advertising

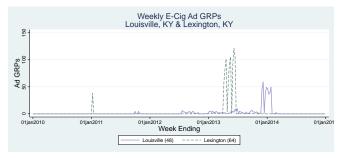


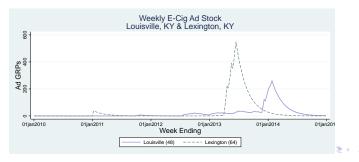



8/19

## Data Description - E-Cigarette Shares by Brand

|                    | Market Share  | Ad Impression Share |
|--------------------|---------------|---------------------|
| Blu (Lorillard)    | 57.8%         | 74.1%               |
| Vuse (RJ Reynolds) | 1.1%          | 10.7%               |
| NJOY               | 8.5%          | 8.4%                |
| Fin                | 12.0%         | 4.2%                |
| Other              | 20.6%         | 2.7%                |
| Total              | \$289,500,000 | 10,328,566,000      |


# Identification of Advertising Effects - Border Discontinuities


- Compare sales and advertising over time in counties on bordering DMAs (Shapiro, 2016)
- Control for different levels in demand Market FEs
- Control for regional demand shocks Border-Time FEs





## Across Border Variation in Advertising Over Time





11/19

ъ

## Market Level Border Counties Regression Results

$$Q_{mt} = \beta_m + \beta_{bt} + \phi \vec{A}_{mt} + \alpha \vec{p}_{mt} + \epsilon_{mt}$$

|                                         | E-Cig Cartridges |  |  |
|-----------------------------------------|------------------|--|--|
| E-Cigarette Ad GRPs                     | 0.191***         |  |  |
|                                         | (0.035)          |  |  |
| Smoking Cessation GRPs                  | -0.047***        |  |  |
|                                         | (0.013)          |  |  |
|                                         |                  |  |  |
| Price Controls                          | Y                |  |  |
| N Obs                                   | 52,236           |  |  |
| E-Cig Ad Elasticity                     | 0.02             |  |  |
| $\%\Delta Q$ from 1 SD $\uparrow$ $A^e$ | 4.86%            |  |  |
| *** p<0.01, ** p<0.05, * p<0.1          |                  |  |  |



## Market Level Border Counties Regression Results

$$Q_{mt} = \beta_m + \beta_{bt} + \phi \vec{A}_{mt} + \alpha \vec{p}_{mt} + \epsilon_{mt}$$

|                                         | E-Cig Cartridges               | Cigarette Packs |  |  |  |
|-----------------------------------------|--------------------------------|-----------------|--|--|--|
| E-Cigarette Ad GRPs                     | 0.191***                       | -2.811***       |  |  |  |
|                                         | (0.035)                        | (0.806)         |  |  |  |
| Smoking Cessation GRPs                  | -0.047***                      | -0.478          |  |  |  |
|                                         | (0.013)                        | (0.315)         |  |  |  |
|                                         |                                |                 |  |  |  |
| Price Controls                          | Y                              | Y               |  |  |  |
| N Obs                                   | 52,236                         | 52,236          |  |  |  |
| E-Cig Ad Elasticity                     | 0.02                           | -0.004          |  |  |  |
| $\%\Delta Q$ from 1 SD $\uparrow$ $A^e$ | 4.86%                          | -0.90%          |  |  |  |
| *** p<0.01                              | *** p<0.01, ** p<0.05, * p<0.1 |                 |  |  |  |



## Household Data Description

- Observe all household purchases between 2010-2014
- Cigarettes, e-cigarettes, and smoking cessation products

## Household Data Description

- Observe all household purchases between 2010-2014
- Cigarettes, e-cigarettes, and smoking cessation products
- 881 households buy e-cigarettes
- ▶ Mean HH: 3 packs cigarettes per week & 6 e-cig purchases
- Majority of HHs (83%) buy cigarettes before e-cigarettes

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

## Substitution and Addiction in Household Purchase Data

$$c_{it} = \alpha_i + \alpha_t + \gamma E_{it} + \beta C_{it} + \delta_1 P_{it} + \delta_2 G_{it} + \epsilon_{it}$$

|                                  | Cig Packs |
|----------------------------------|-----------|
| E-Cig Cartridges in Prev 4 Weeks | -0.030*** |
|                                  | (0.008)   |
| Cig Packs in Prev 4 Weeks        | 0.060***  |
|                                  | (0.007)   |
| Nicotine Patches                 | Y         |
| Nicotine Gum                     | Y         |
| HH FE & Week FE                  | Y         |
| N Obs                            | 1,970,419 |
| Mean DV                          | 1.410     |
| Effect $+1$ E-Cig as % of DV     | -2.13%    |
| *** p<0.01, ** p<0.05, *         | p<0.1     |
|                                  |           |

## Summary of Descriptive Results

- 1. E-cigarette advertising  $\uparrow$  e-cig demand and  $\downarrow$  cigarette demand
- 2. Household purchase patterns consistent with addiction
- 3. Traditional cigarettes and e-cigarettes are substitutes

## Modeling Objectives and Challenges

1. Objectives

Leverage both individual and market-level data Identify advertising effects using border discontinuities Capture dynamic dependencies resulting from addiction Allow for heterogeneity in preferences

Simulate a counterfactual ban on e-cigarette advertising

# Modeling Objectives and Challenges

1. Objectives

Leverage both individual and market-level data

Identify advertising effects using border discontinuities Capture dynamic dependencies resulting from addiction Allow for heterogeneity in preferences

Simulate a counterfactual ban on e-cigarette advertising

2. Challenges

Aggregation of individual-level model with state dependence and heterogeneity

Border discontinuity identification in structural model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ ののの

#### 1. Household Demand

Addiction: t - 1 consumption  $c_{t-1}$  increases utility in t

$$u_{ijt} = \underbrace{\beta_j + \alpha p_{jt} + \phi A_t + \xi_{jt}}_{\delta_{jt}(\theta)} + \gamma c_{it-1} + \varepsilon_{ijt}$$

1. Household Demand

Addiction: t - 1 consumption  $c_{t-1}$  increases utility in t

$$u_{ijt} = \beta_j + \alpha p_{jt} + \phi A_t + \xi_{jt} + \gamma c_{it-1} + \varepsilon_{ijt}$$

$$\delta_{jt}(\theta)$$

2. Aggregate Demand

#### 1. Household Demand

Addiction: t - 1 consumption  $c_{t-1}$  increases utility in t

$$u_{ijt} = \beta_{j} + \alpha p_{jt} + \phi A_t + \xi_{jt} + \gamma c_{it-1} + \varepsilon_{ijt}$$

$$\delta_{jt}(\theta)$$

2. Aggregate Demand

$$\sigma_{jt}(c_{t-1}| heta) = rac{e^{\delta_{jt}( heta)+\gamma c_{t-1}}}{1+\sum_k e^{\delta_{kt}( heta)+\gamma c_{t-1}}}$$

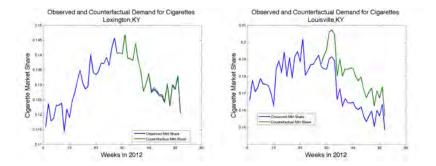
1. Household Demand

Addiction: t - 1 consumption  $c_{t-1}$  increases utility in t

$$u_{ijt} = \beta_{j} + \alpha p_{jt} + \phi A_t + \xi_{jt} + \gamma c_{it-1} + \varepsilon_{ijt}$$

$$\delta_{jt}(\theta)$$

2. Aggregate Demand


$$\sigma_{jt}(c_{t-1}| heta) = rac{e^{\delta_{jt}( heta)+\gamma c_{t-1}}}{1+\sum_k e^{\delta_{kt}( heta)+\gamma c_{t-1}}}$$

 Weight logit purchase probabilities for each consumption state by probability of the consumption state

$$egin{aligned} s_{jt} &= \mathbb{E}_{c_{t-1}}[\sigma_{jt}] \ &= \sigma_{jt}(c_{t-1} = 1| heta) imes extsf{Pr}(c_{t-1} = 1| heta) + \sigma_{jt}(c_{t-1} = 0| heta) imes extsf{Pr}(c_{t-1} = 0| heta) \ &= \sigma_{jt}(c_{t-1} = 1| heta) imes (1 - s_{0t-1}) \ &+ \sigma_{jt}(c_{t-1} = 0| heta) imes s_{0t-1} \end{aligned}$$

## Counterfactual E-Cigarette Advertising Ban

- Impose a ban on e-cigarette advertising
- Simulate market demand using the counterfactual ad stock
- Median % $\Delta$  in cigarette market share:  $\uparrow$  2.64%.



(日)

## Contributions

1. Substantive

Advertising spillovers across categories First empirical analysis of e-cigarette ad effects at scale

## Contributions

### 1. Substantive

Advertising spillovers across categories First empirical analysis of e-cigarette ad effects at scale E-cigarette advertising *decreases* demand for cigarettes Ban may have unintended consequences

## Contributions

### 1. Substantive

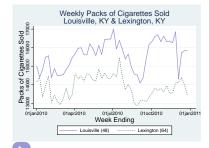
Advertising spillovers across categories First empirical analysis of e-cigarette ad effects at scale E-cigarette advertising *decreases* demand for cigarettes Ban may have unintended consequences

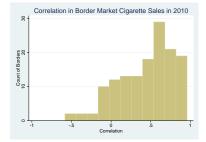
### 2. Methodological

Aggregation of structural model with state dependence & unobserved heterogeneity

Identification of ad effects  $\mathsf{w}/$  border discontinuities  $\mathsf{w}/\mathsf{in}$  nonlinear model

## THANK YOU!


# E-Cigarette Advertising Market Share by Media Type


|          | Media Type            | Dollar Share | Impression Share |
|----------|-----------------------|--------------|------------------|
| National | Cable                 | 73.4%        | 85.7%            |
|          | Network               | 3.0%         | 6.4%             |
|          | Syndicated            | 0.4%         | 0.5%             |
| Local    | Spot                  | 23.1%        | 6.6%             |
|          | Network Clear Spot    | 0.0%         | 0.6%             |
|          | Syndicated Clear Spot | 0.0%         | 0.2%             |
| Total    |                       | \$54,185,012 | 10,328,566,000   |
|          |                       |              |                  |

## Within and Across Market Variation in Ad Stock

|                                 | Ν   | Min  | Median | Mean  | Max    |
|---------------------------------|-----|------|--------|-------|--------|
| Ave E-Cig GRP Stock             | 300 | 0.03 | 14.88  | 21.84 | 138.45 |
| Ave Abs $\Delta$ E-Cig Ad Stock | 150 | 0.70 | 21.25  | 27.89 | 139.54 |
| Coeff Var E-Cig GRPs            | 300 | 1.64 | 3.56   | 4.01  | 10.00  |

### Common Trends: Across Border Variation in Cig Sales





4/9

## Identification Strategy - Challenges

- Identification relies on common trends assumption
- Problem if unobserved shock on one side of border correlated with sales and advertising.

County excise taxes increase County indoor smoking legislation tightens

## Average Characteristics in Border and Non-Border Markets

|                       | Border   | Non-Border |                 |
|-----------------------|----------|------------|-----------------|
|                       | Counties | Counties   | <i>p</i> -value |
| % Female              | 50.14    | 50.16      | 0.764           |
| % Population Under 18 | 22.22    | 22.74      | 0.000           |
| % HS Diploma          | 83.31    | 85.16      | 0.000           |
| % White               | 86.08    | 85.08      | 0.148           |
| % Black               | 8.99     | 10.10      | 0.085           |
| Per Capita Income     | 23,228   | 24,380     | 0.000           |
| Population Density    | 169.4    | 502.1      | 0.001           |
| N Counties            | 772      | 1,202      |                 |

# Normalized Absolute Deviations in Demographics Across Bordering Markets

$$d_b^x = \frac{|x_{bi} - x_{bj}|}{\sigma_x}$$

|                       | Ν   | Min  | Median | Mean | Max  |
|-----------------------|-----|------|--------|------|------|
| % Female              | 150 | 0.00 | 0.57   | 0.87 | 5.59 |
| % Population Under 18 | 150 | 0.00 | 0.58   | 0.79 | 3.59 |
| % HS Diploma          | 150 | 0.01 | 0.46   | 0.61 | 3.88 |
| % White               | 150 | 0.00 | 0.30   | 0.48 | 2.38 |
| % Black               | 150 | 0    | 0.17   | 0.36 | 2.49 |
| Per Capita Income     | 150 | 0.00 | 0.41   | 0.64 | 4.47 |
| Population Density    | 150 | 0.00 | 0.17   | 0.48 | 4.81 |

## Market Level Border Counties Regression Results

$$Q_{mt} = \beta_m + \beta_{bt} + \phi \vec{A}_{mt} + \alpha \vec{p}_{mt} + \epsilon_{mt}$$

|                                         | Patches     | Gum       |
|-----------------------------------------|-------------|-----------|
| E-Cigarette Ad GRPs                     | -0.024      | -1.546*** |
|                                         | (0.019)     | (0.347)   |
| Nicotine Patch Ad GRPs                  | -0.039*     | 1.062***  |
|                                         | (0.020)     | (0.299)   |
| Nicotine Gum Ad GRPs                    | -0.005      | -0.310    |
|                                         | (0.015)     | (0.217)   |
| Price Controls                          | Y           | Y         |
| N Obs                                   | 37,077      | 37,077    |
| E-Cig Ad Elasticity                     | -0.003      | -0.006    |
| $\%\Delta Q$ from 1 SD $\uparrow$ $A^e$ | -0.72%      | -1.40%    |
| *** p<0.01, ** p<                       | <0.05, * p< | <0.1      |

## Assumptions on Error Term

$$Q_{mt} = \beta_m + \beta_{bt} + \phi \vec{A}_{mt} + \alpha \vec{p}_{mt} + \epsilon_{mt}$$
  

$$\uparrow \qquad \uparrow$$
  

$$\epsilon_{mt} = u_m + v_{bt} + \nu_{mt}$$

#### Assumptions

1. 
$$Cov(\nu_{mt}, \nu_{mt-1}) = 0$$

No market-specific serial correlation after FEs Implied by common trends assumption

$$2. \quad Cov(\nu_{mt}, A_{mt}) = 0$$

Advertising not targeted based on demand in border markets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のQの