Robust Bounds for Welfare Analysis

Zi Yang KangShoshana VassermanStanford GSBStanford GSB

Many papers in economics have the following structure:

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.

Many papers in economics have the following structure:

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.

Many papers in economics have the following structure:

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
 - ightarrow Functional forms (e.g., CES or linear demand) are often assumed for convenience.

Example: evaluating the deadweight loss of the Trump tariffs

- Amiti, Redding and Weinstein (2019)
- Setting: 2018 trade war involved tariffs as high as 30-50%.
- Question: What was the DWL?
- Approach: Compare monthly prices & quantities by item in 2017 vs. 2018.
- *q* ► Method: Approximate D(p) with a linear curve; integrate under the curve.

Introduction

Basic model

Bounding the DWL across countries and products

Introduction

Basic model

Many papers in economics have the following structure:

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
 - Functional forms (*e.g.*, CES or linear demand) are often assumed for convenience.
 - $\rightarrow~$ Conservative bounds in lieu of assumptions are often extreme.

Introduction

Basic model

Example: WTP of 1911 UK pension recipients

- Giesecke and Jäger (2021)
- Setting: Pensions created for poor 70+ year olds in 1911.
- Question: What is the MVPF of the pension policy?
- Approach: MVPF = (WTP for not working) / (cost of pension).
- Method: Compute % marginal workers via RD; assume marginal workers' WTP = 0.

Introduction

Basic model

Many papers in economics have the following structure:

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
 - Functional forms (e.g., CES or linear demand) are often assumed for convenience.
 - Conservative bounds in lieu of assumptions are often extreme.
 - \sim Is there a more principled way to engage with assumptions and evaluate welfare?

This paper

Instead of interpolating to get a welfare estimate, we establish welfare bounds.

- These bounds are **robust**: they give the *best-case* and *worst-case* welfare estimates that are consistent with a set of pre-specified economic assumptions.
- These bounds are also **simple**: we can compute them in closed form.

This is a tool for empirical microeconomists

- Our bounds apply directly to settings with:
 - (i) exogenous policy shocks/experiments/quasi-experiments;
 - (ii) measurements of "price" and "quantity," before and after the policy shock; and
 - (iii) interest in effects on consumer surplus (or other welfare measures).

This is a tool for empirical microeconomists

- Our bounds apply directly to settings with:
 - (i) exogenous policy shocks/experiments/quasi-experiments;
 - (ii) measurements of "price" and "quantity," before and after the policy shock; and
 - (iii) interest in effects on consumer surplus (or other welfare measures).
- We show how our bounds can be applied to a variety of settings across literatures:
 - #1. deadweight loss of import tariffs
 #2. welfare impact of energy subsidies
 #3. willingness to pay for the Old-Age Pension Act
 #4. marginal excess burden of income taxation
 (Feldstein, 1999)

Introduction

Basic model

Basic model

An analyst observes 2 points on a demand curve: (p_0, q_0) and (p_1, q_1) .

Question. What is the change in consumer surplus from (p_0, q_0) to (p_1, q_1) ?

Main challenge: D(p) isn't observed.

• With D(p), change in CS is equal to

$$\underbrace{\operatorname{area} A}_{=(p_1-p_0)q_1} + \operatorname{area} B = \int_{p_0}^{p_1} D(p) \, \mathrm{d} p.$$

Equivalently, we want to bound area B.

Extensions

Basic model

Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).

Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).

An upper bound on area B is

area
$$B \leq (p_1 - p_0) imes (q_0 - q_1)$$
 .

Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).

Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).

- An upper bound on area B is
 - area $B \leq (p_1 p_0) imes (q_0 q_1)$.
- A lower bound on area *B* is

 $0 \leq \text{area } B.$

► These bounds are attained only when elasticities are equal to 0 or -∞.

Basic model

Basic model

An analyst observes 2 points on a demand curve: (p_0, q_0) and (p_1, q_1) .

We assume that elasticities between (p_0, q_0) and (p_1, q_1) lie in the interval $[\underline{\varepsilon}, \overline{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from (p_0, q_0) to (p_1, q_1) ?

Introduction

Basic model

Defining 1-piece and 2-piece interpolations

Introduction

Basic model

Welfare bounds for basic model

Theorem 1 (welfare bounds).

The upper and lower bounds for the change in consumer surplus are attained by

2-piece CES interpolations. • Give proof • Skip proof

Introduction

Basic model

Welfare bounds for basic model

Theorem 1 (welfare bounds).

The upper and lower bounds for the change in consumer surplus are attained by

2-piece CES interpolations. • Give proof • Skip proof

Introduction

Basic model

Introduction

Basic model

Introduction

Basic model

Introduction

Basic model

Introduction

Basic model

Introduction

Basic model

Introduction

Basic model

Introduction

Basic model

Choosing elasticity bands

- Question. What is a reasonable elasticity band?
 - (a) Combine estimates from the literature.
 - \sim E.g., "estimates of short run gasoline elasticities are between -0.2 and -0.4."
 - (b) Draw upon institutional knowledge.
 - \sim E.g., "at the extreme, elasticities can't possibly be lower than -5."
 - (c) Draw a (symmetric) band around the *average* elasticity.

$$\underline{\varepsilon} \leq rac{\log q_1 - \log q_0}{\log p_1 - \log p_0} \leq \overline{\varepsilon}.$$

Introduction

Basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

Our welfare bounds for the basic model rely on a number of modeling choices:

1) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

2 Both points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice (e.g. counterfactuals), the analyst might observe p_0 , p_1 , and q_1 , but not q_0 .

Our welfare bounds for the basic model rely on a number of modeling choices:

1) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

2) Both points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice (e.g. counterfactuals), the analyst might observe p_0 , p_1 , and q_1 , but not q_0 .

3 Only two points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice, the analyst might observe more points on the demand curve.

Our welfare bounds for the basic model rely on a number of modeling choices:

1) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

2 Both points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice (e.g. counterfactuals), the analyst might observe p_0 , p_1 , and q_1 , but not q_0 .

3 Only two points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice, the analyst might observe more points on the demand curve.

4 The points (p_0, q_0) and (p_1, q_1) on the demand curve are observed precisely.

In practice, the analyst might be limited by sampling error.

Introduction

Basic model

Extensions to basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1) In practice, the analyst might make assumptions about demand curvature.

 \implies We show how **demand curvature** assumptions lead to tighter bounds.

2 In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_1 , but not q_0 . \implies We show how to **extrapolate** from fewer observations.

3) In practice, the analyst might observe more points on the demand curve.

 \implies We show how to **interpolate** with more observations.

4 In practice, the analyst might be limited by sampling error.

 \implies We show how to incorporate **sampling error** into welfare bounds.

Basic model

1 Assumptions on demand curvature

"Notice that **these results depend on the fact** that the *PP* curve slopes upward, which in turn depends on the assumption that the **elasticity of demand falls with** *c*.

This assumption, which might alternatively be stated as an assumption that the elasticity of demand rises when the price of a good is increased, **seems plausible**.

In any case, it seems to be **necessary** if this model is to yield reasonable results, and I make the assumption without apology."

-Krugman (1979)

1 Assumptions on demand curvature

Many models across different fields impose additional assumptions on demand:

(A1) Decreasing elasticity, or "Marshall's second law." (Marshall, 1890; Krugman, 1979)
(A2) Decreasing marginal revenue. (Myerson, 1981; Bulow and Roberts, 1989)
(A3) Log-concave demand. (Caplin and Nalebuff, 1991a; Bagnoli and Bergstrom, 2005)
(A4) Concave demand. (Rosen, 1965; Szidarovszky and Yakowitz, 1977; Caplin and Nalebuff, 1991a)
(A5) ρ-concave demand that generalizes (A3) and (A4). (Caplin and Nalebuff, 1991a,b)

We call these "concave-like assumptions" on demand.
1 Assumptions on demand curvature

Many models across different fields impose additional assumptions on demand:

(A6) Convex demand. (Svizzero, 1997; Aguirre, Cowan and Vickers, 2010; Tsitsiklis and Xu, 2014)
(A7) Log-convex demand. (Caplin and Nalebuff, 1991b; Aguirre, Cowan and Vickers, 2010)
(A8) ρ-convex demand that generalizes (A6) and (A7). (Caplin and Nalebuff, 1991a,b)

We call these "convex-like assumptions" on demand.

Introduction

Relationships between curvature assumptions

Concave-like assumptions

- (A1) Decreasing elasticity
- (A2) Decreasing MR
- (A3) Log-concave demand
- (A4) Concave demand
- (A5) ρ -concave demand

Convex-like assumptions

- (A6) Convex demand
- (A7) Log-convex demand
- (A8) ρ -convex demand

$$(A7) \Longrightarrow (A6).$$

Assumptions on demand curvature: welfare bounds

Theorem 2a. (concave-like assumptions).

- The **lower** bound for the change in consumer surplus are attained by:
- (A1) decreasing elasticity: a CES interpolation;
- (A2) decreasing MR: a constant MR interpolation;
- (A3) log-concave demand: an *exponential* interpolation;
- (A4) concave demand: a linear interpolation;
- (A5) ρ -concave demand: a ρ -linear interpolation.

 $D(p) = \theta_1 p^{-\theta_2}$ $D(p) = \theta_1 (p - \theta_2)^{-1}$ on; $D(p) = \theta_1 e^{-\theta_2 p}$ $D(p) = \theta_1 - \theta_2 p$ $D(p) = [1 + \rho (\theta_1 - \theta_2 p)]^{1/\rho}$

Assumptions on demand curvature: welfare bounds

Theorem 2b. (convex-like assumptions).

The **upper** bound for the change in consumer surplus are attained by:

(A6) convex demand: a *linear* interpolation;

(A7) log-convex demand: an *exponential* interpolation;

 $D(p) = \theta_1 - \theta_2 p$ $D(p) = \theta_1 e^{-\theta_2 p}$

(A8) ρ -convex demand: a ρ -linear interpolation. $D(p) = [1 + \rho (\theta_1 - \theta_2 p)]^{1/\rho}$

Bounding the tariff DWL across countries and products

Introduction

Basic model

Extensions to basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 In practice, the analyst might make assumptions about demand curvature.

 \implies We show how **demand curvature** assumptions lead to tighter bounds.

In practice (e.g., counterfactuals), the analyst might observe p₀, p₁, and q₁, but not q₀.
 We show how to extrapolate from fewer observations.

3) In practice, the analyst might observe more points on the demand curve.

 \implies We show how to **interpolate** with more observations.

4 *In practice, the analyst might be limited by sampling error.*

 \implies We show how to incorporate **sampling error** into welfare bounds.

Basic mode

(2) Extrapolating from less data: model

An analyst observes **1** point on a demand curve: (p_0, q_0) ; p_1 is given.

We assume that elasticities between p_0 and p_1 lie in the interval $[\underline{\varepsilon}, \overline{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from p_0 to p_1 ?

Basic model

(2) Extrapolating from less data: geometric intuition

Introduction

Basic model

What is the welfare impact of CARE gas subsidies?

QUALIFYING CUSTOMERS CAN RECEIVE A 20-35% UTILITY BILL DISCOUNT.

CALL PG&E AT (866) 743-2273 TO ENROLL.

CARE Program:

- Low income: 20% discount on gas
 - \rightsquigarrow Gas usage \uparrow
 - → Consumer surplus ↑
 - \rightsquigarrow Climate impact \downarrow
- - \rightsquigarrow Gas usage \downarrow
 - \sim Consumer surplus \downarrow
 - \sim Climate impact \uparrow
- Administrative Cost: \$7M

Basic model

Bounding counterfactual welfare from uniform pricing

Introduction

Basic model

What is the welfare impact of CARE gas subsidies?

QUALIFYING CUSTOMERS CAN RECEIVE A 20-35% UTILITY BILL DISCOUNT.

CALL PG&E AT (866) 743-2273 TO ENROLL.

CARE Program:

- Low income: 20% discount on gas
 - \rightsquigarrow Gas usage \uparrow
 - \rightsquigarrow Consumer surplus \uparrow
 - \rightsquigarrow Climate impact \downarrow
- **Other households:** Gas price \uparrow (given a fixed budget)
 - \rightsquigarrow Gas usage \downarrow
 - → Consumer surplus ↓
 - \rightsquigarrow Climate impact \uparrow
- Administrative Cost: \$7M

Question: Is CARE net welfare improving?

Basic model

Empirical strategy:

- Randomly nudge eligible households to sign up for CARE.
- Compute LATE based on gas usage with and without CARE (using nudges as an IV).
- Interpret the LATE as an elasticity:
- \sim How much does gas usage change given a 20% discount in unit price?

Empirical strategy:

- Randomly nudge eligible households to sign up for CARE.
- Compute LATE based on gas usage with and without CARE (using nudges as an IV).
- Interpret the LATE as an elasticity:
- \sim How much does gas usage change given a 20% discount in unit price?

Modeling assumptions:

- The CARE program operates under a fixed budget
- \sim The counterfactual "uniform" price is pinned down by observed quantities

$$N_n(P_n-P^*)Q_n=N_c(P^*-P_c)Q_c+A.$$

- Consumer demand is linear

Introduction

Basic mode

Elasticity estimates:

- \sim Estimated CARE elasticity of -0.35.
 - Assume non-CARE elasticity is -0.14 (Auffhammer and Rubin, 2018).

Welfare estimates:

CARE: + \$5.3M Non-CARE: - \$3.1M Admin Costs: - \$7.0M

Net: - \$4.8M

Elasticity estimates:

 \sim Estimated CARE elasticity of -0.35.

- Assume non-CARE elasticity is -0.14 (Auffhammer and Rubin, 2018).

Welfare estimates:

CARE: + \$5.3M Non-CARE: - \$3.1M Admin Costs: - \$7.0M Net: - \$4.8M

Introduction

Basic model

How robust is the negative welfare result?

Introduction

Basic model

Discussion

Why might we expect the welfare results to flip?

- **#1.** Before imposing any assumptions, we can test the conservative (box) bounds.
- **#2.** We "observe" p_1, q_1, ε_1 and p_0 but not q_0 or ε_0 .
- **#3.** Our bounds are "adversarial."

So, how do we interpret these results?

- \rightsquigarrow The Hahn and Metcalfe conclusion is pretty robust.
- \sim In fact, uncertainty in the non-CARE elasticity is not enough to break their result.

Extensions to the basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 In practice, the analyst might make assumptions about demand curvature.

 \implies We show how **demand curvature** assumptions lead to tighter bounds.

2 In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_1 , but not q_0 . \implies We show how to **extrapolate** from fewer observations.

3 In practice, the analyst might observe more points on the demand curve.

 \implies We show how to **interpolate** with more observations. \bigcirc Details

4) In practice, the analyst might be limited by sampling error.

 \implies We show how to incorporate **sampling error** into welfare bounds. \bigcirc Details

Basic mode

- **#1.** Producer surplus works just as well as CS.
- **#2.** Can handle heterogeneity + distributional questions.
- **#3.** Can handle alternative welfare measures like EV and CV.
- **#4.** Can handle multiple objectives at once.
 - \sim E.g., Pareto-weighted consumer surplus + DWL.

Skip to the end

Summing up

- **This paper.** Develops a framework to bound welfare based on economic reasoning.
- **Building on previous work.** Hope to make the case that everyone should use this.
- **Use cases.** Draw/assess conclusions from empirical objects commonly estimated.
- **Future work.** We're excited about this.
 - Robustness for structural IO-style problems (e.g., inference with endogenous pricing, merger screens, welfare in horizontally differentiated good markets).
 - Robustness for new goods and price indices (e.g., the CPI).
 - Robustness for larger macro models (e.g., extending ACR, ACDR).

- Aguirre, Inaki, Simon Cowan, and John Vickers, "Monopoly Price Discrimination and Demand Curvature," *American Economic Review*, 2010, *100* (4), 1601–15.
- Amiti, Mary, Stephen J. Redding, and David E. Weinstein, "The Impact of the 2018 Tariffs on Prices and Welfare," *Journal of Economic Perspectives*, 2019, *33* (4), 187–210.
- Auffhammer, Maximilian and Edward Rubin, "Natural Gas Price Elasticities and Optimal Cost Recovery Under Consumer Heterogeneity: Evidence From 300 Million Natural Gas Bills," *Working paper*, 2018.
- Bagnoli, Mark and Ted Bergstrom, "Log-Concave Probability and Its Applications," *Economic Theory*, 2005, *26* (2), 445–469.
- Bulow, Jeremy and John Roberts, "The Simple Economics of Optimal Auctions," *Journal of Political Economy*, 1989, *97* (5), 1060–1090.

- **Caplin, Andrew and Barry Nalebuff**, "Aggregation and Imperfect Competition: On the Existence of Equilibrium," *Econometrica*, 1991, *59* (1), 25–59.
- _ and _ , "Aggregation and Social Choice: A Mean Voter Theorem," *Econometrica*, 1991, 59 (1), 1–23.
- Feldstein, Martin, "Tax Avoidance and the Deadweight Loss of the Income Tax," *Review of Economics and Statistics*, 1999, *81* (4), 674–680.
- **Fogel, Robert William**, *Railroads and American Economic Growth*, Baltimore, MD: Johns Hopkins Press, 1964.
- **Giesecke, Matthias and Philipp Jäger**, "Pension incentives and labor supply: Evidence from the introduction of universal old-age assistance in the UK," *Journal of Public Economics*, 2021, 203, 104516.

- Hahn, Robert W. and Robert D. Metcalfe, "Efficiency and Equity Impacts of Energy Subsidies," *American Economic Review*, 2021, *111* (5), 1658-88.
- Krugman, Paul R., "Increasing Returns, Monopolistic Competition, and International Trade," *Journal of International Economics*, 1979, *9* (4), 469–479.

Marshall, Alfred, Principles of Economics, London, UK: Macmillan and Co., 1890.

- **Myerson, Roger B.**, "Optimal Auction Design," *Mathematics of Operations Research*, 1981, 6 (1), 58–73.
- Rosen, J. B., "Existence and Uniqueness of Equilibrium Points for Concave *N*-person Games," *Econometrica*, 1965, pp. 520–534.
- Svizzero, Serge, "Cournot Equilibrium with Convex Demand," *Economics Letters*, 1997, 54 (2), 155–158.

- Szidarovszky, Ferenc and Sidney Yakowitz, "A New Proof of the Existence and Uniqueness of the Cournot Equilibrium," *International Economic Review*, 1977, *18* (3), 787–789.
- Tsitsiklis, John N and Yunjian Xu, "Efficiency Loss in a Cournot Oligopoly with Convex Market Demand," *Journal of Mathematical Economics*, 2014, *53*, 46–58.
- Varian, Hal R, "Price Discrimination and Social Welfare," *American Economic Review*, 1985, 75 (4), 870–875.

1) Assumptions on demand curvature: geometric intuition

Theorem 2a. (concave-like assumptions).

The lower bound for the change in consumer surplus are attained by:

(A1) decreasing elasticity: a CES interpolation.

 $D(p) = \theta_1 p^{-\theta_2}$

Information Design (Alternative) Proof

Step #1. Transform the problem.

For each (Ai), map D(p) to a measure h(p) in the appropriate functional space.

Step #2. Show that welfare is "monotone" with respect to h(p) under a partial order.

Mean-preserving spreads of h(p) increase welfare.

Step #3. Derive the upper and lower bounds in terms of h(p) and map back to D(p).

Lower bound is attained when h(p) is a step function (i.e., has 2 constant pieces). Upper bound is attained when h(p) is constant (i.e., has 1 constant piece).

Alternative Proof: Step #1 – Change of Variables

(A1) Decreasing Elasticity

(A6) Convex Demand

Variable change:

$$h(\pi) := \varepsilon(e^{\pi}), \text{ where } \pi = \log p.$$

Mapping: $D(p) = q_0 \exp \left[\int_{\log p_0}^{\log p} h(\pi) \, \mathrm{d}\pi \right].$ Variable change:

$$h(p) := D'(p)$$

Mapping:
$$D(p) = D(p_0) + \int_{p_0}^{p} h(s) \, ds$$
.

Transformation:

Transformation:

$$\begin{cases}
\overline{\Delta CS} = q_0 \cdot \max_{h \in \mathcal{E}} \int_{p_0}^{p_1} \exp\left[\int_{\log p_0}^{\log p} h(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p, \\
\underline{\Delta CS} = q_0 \cdot \min_{h \in \mathcal{E}} \int_{p_0}^{p_1} \exp\left[\int_{\log p_0}^{\log p} h(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p.
\end{cases}
\begin{cases}
\overline{\Delta CS} = \max_{h \in \mathcal{E}} \int_{p_0}^{p_1} (p_1 - p_1) \, \mathrm{d}p, \\
\underline{\Delta CS} = q_0 \cdot \min_{h \in \mathcal{E}} \int_{p_0}^{p_1} \exp\left[\int_{\log p_0}^{\log p} h(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p.
\end{cases}$$

References

p) h(p) dp,

p) h(p) dp.

Example: (A6) Convex Demand

Definition: $h_2 \succeq h_1$ if h_2 is a mean-preserving spread of h_1

$$h_2 \succeq h_1 \iff \int_{p_0}^p h_2(s) \,\mathrm{d}s \ge \int_{p_0}^p h_1(s) \,\mathrm{d}s \qquad \forall \ p \in [p_0, p_1].$$

▶ This defines a *partial order* on the family of *h*(*p*)

- \Rightarrow Can think of this as second-order stochastic dominance
- \Rightarrow For (A6), think of h(p) as a CDF: increasing with a mean constraint:

$$D(p_0)=q_0 \quad ext{ and } \quad D(p_1)=q_1 \implies \int_{p_0}^{p_1} h(p) \,\mathrm{d}p=q_0-q_1.$$

Alternative Proof: Step #2b – Connecting to Welfare

Example: (A6) Convex Demand

Lemma. The welfare objective is monotone in the partial order \succeq :

$$h_2 \succeq h_1 \implies \int_{p_0}^{p_1} (p_1 - p) h_2(p) dp \ge \int_{p_0}^{p_1} (p_1 - p) h_1(p) dp.$$

Intuition: Risk-averse gamblers prefer contractions of lotteries

Corollary. The upper (*resp.*, lower) bound is attained by iteratively applying mean-preserving spreads (*resp.*, mean-preserving contractions) to h(p).

Step #3: deriving the upper bound

Consider the density that generates h(p), where h(p) is viewed as a CDF:

Consider the density that generates h(p), where h(p) is viewed as a CDF:

Consider the density that generates h(p), where h(p) is viewed as a CDF:

Consider the density that generates h(p), where h(p) is viewed as a CDF:

р

Consider the density that generates h(p), where h(p) is viewed as a CDF:

So the h(p) that attains the **upper bound on welfare** is **constant** between p_0 and p_1 :

Similarly, the h(p) that attains the **lower bound on welfare** is a **step function**.

Similarly, the h(p) that attains the **lower bound on welfare** is a **step function**.

Step #3: deriving welfare bounds

Mapping back from h(p) into demand curves D(p):

h(p) is constant $\iff D'(p)$ is constant $\iff D(p)$ is linear.

Step #3: deriving welfare bounds

Mapping back from h(p) into demand curves D(p):

$$h(p)$$
 is constant $\iff D'(p)$ is constant $\iff D(p)$ is linear.

This proves the bounds for assumption (A6) (convexity of demand):

- The **upper bound** is attained by a 1-piece linear interpolation.
- The lower bound is attained by a 2-piece linear interpolation.

Step #3: deriving welfare bounds •• Back

Mapping back from h(p) into demand curves D(p):

h(p) is constant $\iff D'(p)$ is constant $\iff D(p)$ is linear.

This proves the bounds for assumption (A6) (convexity of demand):

- The **upper bound** is attained by a 1-piece linear interpolation.
- The lower bound is attained by a 2-piece linear interpolation.
- The same proof strategy works for all the other assumptions (with different h(p)).

References

An analyst observes **3 points** on a demand curve: (p_0, q_0) , (p_1, q_1) , and (p_2, q_2) .

We assume that elasticity between p_0 and p_2 lie in the interval $[\underline{\varepsilon}, \overline{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from p_0 to p_2 ?

3) Interpolating with more data: geometric intuition

3 Interpolating with more data: geometric intuition

3 Interpolating with more data: geometric intuition

3) Interpolating with more data: geometric intuition

3) Interpolating with more data: geometric intuition

Quantities demanded might be noisily observed:

$$q_1 = D(p_1) + e$$
 where $e \sim \mathcal{N}\left(0, \sigma^2/N_1\right)$ (1)

Question. What is the 95% CI on the change in consumer surplus from p_0 to p_1 ?

- \Rightarrow The bounds $\overline{\Delta CS}(q_0, q_1)$ and $\underline{\Delta CS}(q_0, q_1)$ are monotonic in q_1
- \Rightarrow Obtain CIs by plugging in the CIs of q_1