Robust Bounds for Welfare Analysis

Zi Yang Kang
Stanford GSB
Shoshana Vasserman
Stanford GSB

Motivation

- Many papers in economics have the following structure:

1. A policy (e.g., tax/subsidy) was implemented.
2. Using prices and quantities before and after, estimate demand.
3. Impute the change in welfare + compare to costs/revenues.

Motivation

- Many papers in economics have the following structure:

1. A policy (e.g., tax/subsidy) was implemented.
2. Using prices and quantities before and after, estimate demand.
3. Impute the change in welfare + compare to costs/revenues.

- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.

Motivation

- Many papers in economics have the following structure:

1. A policy (e.g., tax/subsidy) was implemented.
2. Using prices and quantities before and after, estimate demand.
3. Impute the change in welfare + compare to costs/revenues.

- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
\rightarrow Functional forms (e.g., CES or linear demand) are often assumed for convenience.

Example: evaluating the deadweight loss of the Trump tariffs

- Amiti, Redding and Weinstein (2019)

- Setting: 2018 trade war involved tariffs as high as $30-50 \%$.
- Question: What was the DWL?
- Approach: Compare monthly prices \& quantities by item in 2017 vs. 2018.
- Method: Approximate $D(p)$ with a linear curve; integrate under the curve.

Bounding the DWL across countries and products

Motivation

- Many papers in economics have the following structure:

1. A policy (e.g., tax/subsidy) was implemented.
2. Using prices and quantities before and after, estimate demand.
3. Impute the change in welfare + compare to costs/revenues.

- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
- Functional forms (e.g., CES or linear demand) are often assumed for convenience.
\rightarrow Conservative bounds in lieu of assumptions are often extreme.

Example: WTP of 1911 UK pension recipients

- Giesecke and Jäger (2021)
- Setting: Pensions created for poor 70+ year olds in 1911.
- Question: What is the MVPF of the pension policy?
- Approach: MVPF $=($ WTP for not working) / (cost of pension).
- Method: Compute \% marginal workers via RD; assume marginal workers' $\mathrm{WTP}=0$.

Motivation

- Many papers in economics have the following structure:

1. A policy (e.g., tax/subsidy) was implemented.
2. Using prices and quantities before and after, estimate demand.
3. Impute the change in welfare + compare to costs/revenues.

- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
- Functional forms (e.g., CES or linear demand) are often assumed for convenience.
- Conservative bounds in lieu of assumptions are often extreme.
\sim Is there a more principled way to engage with assumptions and evaluate welfare?

This paper

- Instead of interpolating to get a welfare estimate, we establish welfare bounds.
- These bounds are robust: they give the best-case and worst-case welfare estimates that are consistent with a set of pre-specified economic assumptions.
- These bounds are also simple: we can compute them in closed form.

This is a tool for empirical microeconomists

- Our bounds apply directly to settings with:
(i) exogenous policy shocks/experiments/quasi-experiments;
(ii) measurements of "price" and "quantity," before and after the policy shock; and
(iii) interest in effects on consumer surplus (or other welfare measures).

This is a tool for empirical microeconomists

- Our bounds apply directly to settings with:
(i) exogenous policy shocks/experiments/quasi-experiments;
(ii) measurements of "price" and "quantity," before and after the policy shock; and
(iii) interest in effects on consumer surplus (or other welfare measures).
- We show how our bounds can be applied to a variety of settings across literatures:
\#1. deadweight loss of import tariffs
\#2. welfare impact of energy subsidies
\#3. willingness to pay for the Old-Age Pension Act
\#4. marginal excess burden of income taxation
(Amiti, Redding and Weinstein, 2019)
(Hahn and Metcalfe, 2021)
(Giesecke and Jäger, 2021)
(Feldstein, 1999)

Basic model

An analyst observes 2 points on a demand curve: $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$.

Question. What is the change in consumer surplus from $\left(p_{0}, q_{0}\right)$ to $\left(p_{1}, q_{1}\right)$?

- Main challenge: $D(p)$ isn't observed.
- With $D(p)$, change in CS is equal to

$$
\underbrace{\operatorname{area} A}_{=\left(p_{1}-p_{0}\right) q_{1}}+\text { area } B=\int_{p_{0}}^{p_{1}} D(p) \mathrm{d} p
$$

- Equivalently, we want to bound area B.

Bounds without additional assumptions

- Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).

- Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).
- An upper bound on area B is

$$
\text { area } B \leq\left(p_{1}-p_{0}\right) \times\left(q_{0}-q_{1}\right) .
$$

- Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).
- An upper bound on area B is

$$
\text { area } B \leq\left(p_{1}-p_{0}\right) \times\left(q_{0}-q_{1}\right) .
$$

- A lower bound on area B is

$$
0 \leq \text { area } B
$$

Bounds without additional assumptions

- Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).
- An upper bound on area B is

$$
\text { area } B \leq\left(p_{1}-p_{0}\right) \times\left(q_{0}-q_{1}\right) .
$$

- A lower bound on area B is

$$
0 \leq \text { area } B
$$

- These bounds are attained only when elasticities are equal to 0 or $-\infty$.

Basic model

An analyst observes 2 points on a demand curve: $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$.
We assume that elasticities between $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$ lie in the interval $[\underline{\varepsilon}, \bar{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from $\left(p_{0}, q_{0}\right)$ to $\left(p_{1}, q_{1}\right)$?

Defining 1-piece and 2-piece interpolations

Welfare bounds for basic model

Theorem 1 (welfare bounds).
The upper and lower bounds for the change in consumer surplus are attained by 2-piece CES interpolations. Give proif skip proof

Welfare bounds for basic model

Theorem 1 (welfare bounds).
The upper and lower bounds for the change in consumer surplus are attained by 2-piece CES interpolations. Give proif skip proof

Geometric derivation of welfare bounds Back

Geometric derivation of welfare bounds

Geometric derivation of welfare bounds

Geometric derivation of welfare bounds

Geometric derivation of welfare bounds

Geometric derivation of welfare bounds

Choosing elasticity bands

- Question. What is a reasonable elasticity band?
(a) Combine estimates from the literature.
\sim E.g., "estimates of short run gasoline elasticities are between -0.2 and -0.4 ."
(b) Draw upon institutional knowledge.
\leadsto E.g., "at the extreme, elasticities can't possibly be lower than -5."
(c) Draw a (symmetric) band around the average elasticity.

$$
\underline{\varepsilon} \leq \frac{\log q_{1}-\log q_{0}}{\log p_{1}-\log p_{0}} \leq \bar{\varepsilon}
$$

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:
(1) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:
(1) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.
(2) Both points $\left(p_{0}, q_{0}\right)$ and (p_{1}, q_{1}) on the demand curve are observed.

In practice (e.g. counterfactuals), the analyst might observe p_{0}, p_{1}, and q_{1}, but not q_{0}.

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:
(1) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.
(2) Both points $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$ on the demand curve are observed. In practice (e.g. counterfactuals), the analyst might observe p_{0}, p_{1}, and q_{1}, but not q_{0}.
(3) Only two points (p_{0}, q_{0}) and (p_{1}, q_{1}) on the demand curve are observed. In practice, the analyst might observe more points on the demand curve.

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:
(1) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.
(2) Both points $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$ on the demand curve are observed. In practice (e.g. counterfactuals), the analyst might observe p_{0}, p_{1}, and q_{1}, but not q_{0}.
(3) Only two points (p_{0}, q_{0}) and (p_{1}, q_{1}) on the demand curve are observed. In practice, the analyst might observe more points on the demand curve.
(4) The points $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$ on the demand curve are observed precisely. In practice, the analyst might be limited by sampling error.

Extensions to basic model

Our welfare bounds for the basic model rely on a number of modeling choices:
(1) In practice, the analyst might make assumptions about demand curvature.
\Longrightarrow We show how demand curvature assumptions lead to tighter bounds.
(2) In practice (e.g., counterfactuals), the analyst might observe p_{0}, p_{1}, and q_{1}, but not q_{0}. \Longrightarrow We show how to extrapolate from fewer observations.
(3) In practice, the analyst might observe more points on the demand curve.
\Longrightarrow We show how to interpolate with more observations.
(4) In practice, the analyst might be limited by sampling error.
\Longrightarrow We show how to incorporate sampling error into welfare bounds.

(1) Assumptions on demand curvature

"Notice that these results depend on the fact that the $P P$ curve slopes upward, which in turn depends on the assumption that the elasticity of demand falls with c.

This assumption, which might alternatively be stated as an assumption that the elasticity of demand rises when the price of a good is increased, seems plausible.

In any case, it seems to be necessary if this model is to yield reasonable results, and I make the assumption without apology."

(1) Assumptions on demand curvature

Many models across different fields impose additional assumptions on demand:
(A1) Decreasing elasticity, or "Marshall's second law."
(Marshall, 1890; Krugman, 1979)
(A2) Decreasing marginal revenue.
(Myerson, 1981; Bulow and Roberts, 1989)
(A3) Log-concave demand.
(Caplin and Nalebuff, 1991a; Bagnoli and Bergstrom, 2005)
(A4) Concave demand. (Rosen, 1965; Szidarovszky and Yakowitz, 1977; Caplin and Nalebuff, 1991a)
(A5) ρ-concave demand that generalizes (A3) and (A4). (Caplin and Nalebuff, 1991a,b)

We call these "concave-like assumptions" on demand.

(1) Assumptions on demand curvature

Many models across different fields impose additional assumptions on demand:
(A6) Convex demand. (Svizzero, 1997; Aguirre, Cowan and Vickers, 2010; Tsitsiklis and Xu, 2014)
(A7) Log-convex demand. (Caplin and Nalebuff, 1991b; Aguirre, Cowan and Vickers, 2010)
(A8) ρ-convex demand that generalizes (A6) and (A7). (Caplin and Nalebuff, 1991a,b)

We call these "convex-like assumptions" on demand.

Relationships between curvature assumptions

Concave-like assumptions

Convex-like assumptions

(A1) Decreasing elasticity
(A2) Decreasing MR
(A3) Log-concave demand
(A4) Concave demand
(A5) ρ-concave demand

(A6) Convex demand
(A7) Log-convex demand
(A8) ρ-convex demand

$$
(\mathrm{A} 7) \Longrightarrow(\mathrm{A} 6)
$$

Theorem 2a. (concave-like assumptions).
The lower bound for the change in consumer surplus are attained by:
(A1) decreasing elasticity: a CES interpolation;

$$
D(p)=\theta_{1} p^{-\theta_{2}}
$$

(A2) decreasing MR: a constant MR interpolation;

$$
D(p)=\theta_{1}\left(p-\theta_{2}\right)^{-1}
$$

(A3) log-concave demand: an exponential interpolation;

$$
D(p)=\theta_{1} e^{-\theta_{2} p}
$$

(A4) concave demand: a linear interpolation;

$$
D(p)=\theta_{1}-\theta_{2} p
$$

(A5) ρ-concave demand: a ρ-linear interpolation.

$$
D(p)=\left[1+\rho\left(\theta_{1}-\theta_{2} p\right)\right]^{1 / \rho}
$$

Theorem 2b. (convex-like assumptions).
The upper bound for the change in consumer surplus are attained by:
(A6) convex demand: a linear interpolation;

$$
D(p)=\theta_{1}-\theta_{2} p
$$

(A7) log-convex demand: an exponential interpolation;
(A8) ρ-convex demand: a ρ-linear interpolation.

$$
D(p)=\left[1+\rho\left(\theta_{1}-\theta_{2} p\right)\right]^{1 / \rho}
$$

Bounding the tariff DWL across countries and products

Extensions to basic model

Our welfare bounds for the basic model rely on a number of modeling choices:
(1) In practice, the analyst might make assumptions about demand curvature.
\Longrightarrow We show how demand curvature assumptions lead to tighter bounds.
(2) In practice (e.g., counterfactuals), the analyst might observe p_{0}, p_{1}, and q_{1}, but not q_{0}.
\Longrightarrow We show how to extrapolate from fewer observations.
(3) In practice, the analyst might observe more points on the demand curve.
\Longrightarrow We show how to interpolate with more observations.
(4) In practice, the analyst might be limited by sampling error.
\Longrightarrow We show how to incorporate sampling error into welfare bounds.

(2) Extrapolating from less data: model

An analyst observes 1 point on a demand curve: $\left(p_{0}, q_{0}\right) ; p_{1}$ is given.
We assume that elasticities between p_{0} and p_{1} lie in the interval $[\underline{\varepsilon}, \bar{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from p_{0} to p_{1} ?

(2) Extrapolating from less data: geometric intuition

What is the welfare impact of CARE gas subsidies?

QUALIFYING CUSTOMERS CAN RECEIVE A $\mathbf{2 0 - 3 5} \%$
UTILITY BILL DISCOUNT
CALL PG\&E AT (866) 743-2273 TO ENROLL.

CARE Program:

- Low income: 20% discount on gas
\sim Gas usage \uparrow
\sim Consumer surplus \uparrow
\sim Climate impact \downarrow
- Other households: Gas price \uparrow (given a fixed budget)
\sim Gas usage \downarrow
\sim Consumer surplus \downarrow
\sim Climate impact \uparrow
- Administrative Cost: $\$ 7 \mathrm{M}$

Bounding counterfactual welfare from uniform pricing

What is the welfare impact of CARE gas subsidies?

QUALIFYING CUSTOMERS CAN RECEIVE A 20-35\%
UTILITY BILL DISCOUNT.
CALL PG\&E AT (866) 743-2273 TO ENROLL.

CARE Program:

- Low income: 20% discount on gas
\sim Gas usage \uparrow
$~$ Consumer surplus \uparrow
\sim Climate impact \downarrow
- Other households: Gas price \uparrow (given a fixed budget)
$~$ Gas usage \downarrow
\sim Consumer surplus \downarrow
\sim Climate impact \uparrow
- Administrative Cost: $\$ 7 \mathrm{M}$

Question: Is CARE net welfare improving?

Welfare impact of energy subsidies (Hahn and Metcalfe, 2021)

- Empirical strategy:

- Randomly nudge eligible households to sign up for CARE.
- Compute LATE based on gas usage with and without CARE (using nudges as an IV).
- Interpret the LATE as an elasticity:
$~$ How much does gas usage change given a 20% discount in unit price?

Welfare impact of energy subsidies (Hahn and Metcalfe, 2021)

- Empirical strategy:
- Randomly nudge eligible households to sign up for CARE.
- Compute LATE based on gas usage with and without CARE (using nudges as an IV).
- Interpret the LATE as an elasticity:
\sim How much does gas usage change given a 20% discount in unit price?
- Modeling assumptions:
- The CARE program operates under a fixed budget
\leadsto The counterfactual "uniform" price is pinned down by observed quantities

$$
N_{n}\left(P_{n}-P^{*}\right) Q_{n}=N_{c}\left(P^{*}-P_{c}\right) Q_{c}+A .
$$

- Consumer demand is linear

Welfare impact of energy subsidies (Hahn and Metcalfe, 2021)

- Elasticity estimates:
\sim Estimated CARE elasticity of $\mathbf{- 0 . 3 5}$.
- Assume non-CARE elasticity is $\mathbf{- 0 . 1 4}$ (Auffhammer and Rubin, 2018).
- Welfare estimates:

CARE: $\quad+\$ 5.3 \mathrm{M}$
Non-CARE: \quad - 3.1 M
Admin Costs: $-\$ 7.0 \mathrm{M}$

Net: $\quad-\$ 4.8 \mathrm{M}$

Welfare impact of energy subsidies (Hahn and Metcalfe, 2021)

- Elasticity estimates:
\sim Estimated CARE elasticity of $\mathbf{- 0 . 3 5}$.
- Assume non-CARE elasticity is - $\mathbf{0 . 1 4}$ (Auffhammer and Rubin, 2018).
- Welfare estimates:

CARE: $\quad+\$ 5.3 \mathrm{M}$
Non-CARE: - $\$ 3.1 \mathrm{M}$
Admin Costs: - \$7.0M

Net: $\quad-\$ 4.8 \mathrm{M}$

How robust is the negative welfare result?

Discussion

- Why might we expect the welfare results to flip?
\#1. Before imposing any assumptions, we can test the conservative (box) bounds.
\#2. We "observe" $p_{1}, q_{1}, \varepsilon_{1}$ and p_{0} but not q_{0} or ε_{0}.
\#3. Our bounds are "adversarial."
- So, how do we interpret these results?
\sim The Hahn and Metcalfe conclusion is pretty robust.
\sim In fact, uncertainty in the non-CARE elasticity is not enough to break their result.

Extensions to the basic model

Our welfare bounds for the basic model rely on a number of modeling choices:
(1) In practice, the analyst might make assumptions about demand curvature.
\Longrightarrow We show how demand curvature assumptions lead to tighter bounds.
(2) In practice (e.g., counterfactuals), the analyst might observe p_{0}, p_{1}, and q_{1}, but not q_{0}.
\Longrightarrow We show how to extrapolate from fewer observations.
(3) In practice, the analyst might observe more points on the demand curve.
\Longrightarrow We show how to interpolate with more observations.
(4) In practice, the analyst might be limited by sampling error.
\Longrightarrow We show how to incorporate sampling error into welfare bounds.

Further extensions: welfare beyond $\triangle C S$

\#1. Producer surplus works just as well as CS.
\#2. Can handle heterogeneity + distributional questions.
\#3. Can handle alternative welfare measures like EV and CV.
\#4. Can handle multiple objectives at once.
$~$ E.g., Pareto-weighted consumer surplus + DWL.

Summing up

- This paper. Develops a framework to bound welfare based on economic reasoning.
- Building on previous work. Hope to make the case that everyone should use this.
- Use cases. Draw/assess conclusions from empirical objects commonly estimated.
- Future work. We're excited about this.
- Robustness for structural IO-style problems (e.g., inference with endogenous pricing, merger screens, welfare in horizontally differentiated good markets).
- Robustness for new goods and price indices (e.g., the CPI).
- Robustness for larger macro models (e.g., extending ACR, ACDR).

References

Aguirre, Inaki, Simon Cowan, and John Vickers, "Monopoly Price Discrimination and Demand Curvature," American Economic Review, 2010, 100 (4), 1601-15.

Amiti, Mary, Stephen J. Redding, and David E. Weinstein, "The Impact of the 2018 Tariffs on Prices and Welfare," Journal of Economic Perspectives, 2019, 33 (4), 187-210.

Auffhammer, Maximilian and Edward Rubin, "Natural Gas Price Elasticities and Optimal Cost Recovery Under Consumer Heterogeneity: Evidence From 300 Million Natural Gas Bills," Working paper, 2018.

Bagnoli, Mark and Ted Bergstrom, "Log-Concave Probability and Its Applications," Economic Theory, 2005, 26 (2), 445-469.

Bulow, Jeremy and John Roberts, "The Simple Economics of Optimal Auctions," Journal of Political Economy, 1989, 97 (5), 1060-1090.

References

Caplin, Andrew and Barry Nalebuff, "Aggregation and Imperfect Competition: On the Existence of Equilibrium," Econometrica, 1991, 59 (1), 25-59.
_ and _ , "Aggregation and Social Choice: A Mean Voter Theorem," Econometrica, 1991, 59 (1), 1-23.

Feldstein, Martin, "Tax Avoidance and the Deadweight Loss of the Income Tax," Review of Economics and Statistics, 1999, 81 (4), 674-680.

Fogel, Robert William, Railroads and American Economic Growth, Baltimore, MD: Johns Hopkins Press, 1964.

Giesecke, Matthias and Philipp Jäger, "Pension incentives and labor supply: Evidence from the introduction of universal old-age assistance in the UK," Journal of Public Economics, 2021, 203, 104516.

References

Hahn, Robert W. and Robert D. Metcalfe, "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, 2021, 111 (5), 1658-88.

Krugman, Paul R., "Increasing Returns, Monopolistic Competition, and International Trade," Journal of International Economics, 1979, 9(4), 469-479.

Marshall, Alfred, Principles of Economics, London, UK: Macmillan and Co., 1890.
Myerson, Roger B., "Optimal Auction Design," Mathematics of Operations Research, 1981, 6 (1), 58-73.

Rosen, J. B., "Existence and Uniqueness of Equilibrium Points for Concave N-person Games," Econometrica, 1965, pp. 520-534.

Svizzero, Serge, "Cournot Equilibrium with Convex Demand," Economics Letters, 1997, 54 (2), 155-158.

References

Szidarovszky, Ferenc and Sidney Yakowitz, "A New Proof of the Existence and Uniqueness of the Cournot Equilibrium," International Economic Review, 1977, 18 (3), 787-789.

Tsitsiklis, John N and Yunjian Xu, "Efficiency Loss in a Cournot Oligopoly with Convex Market Demand," Journal of Mathematical Economics, 2014, 53, 46-58.

Varian, Hal R, "Price Discrimination and Social Welfare," American Economic Review, 1985, 75 (4), 870-875.

(1) Assumptions on demand curvature: geometric intuition

Theorem 2a. (concave-like assumptions).
The lower bound for the change in consumer surplus are attained by:
(A1) decreasing elasticity: a CES interpolation.

$$
D(p)=\theta_{1} p^{-\theta_{2}}
$$

(1) Assumptions on demand curvature: geometric intuition

Marshall's second law (decreasing elasticity) $\Longleftrightarrow \log q$ is concave in $\log p$.

References
(1) Assumptions on demand curvature: geometric intuition

Marshall's second law (decreasing elasticity) $\Longleftrightarrow \log q$ is concave in $\log p$.

References
(1) Assumptions on demand curvature: geometric intuition

Marshall's second law (decreasing elasticity) $\Longleftrightarrow \log q$ is concave in $\log p$.

References
(1) Assumptions on demand curvature: geometric intuition

Marshall's second law (decreasing elasticity) $\Longleftrightarrow \log q$ is concave in $\log p$.

References
(1) Assumptions on demand curvature: geometric intuition Back

Marshall's second law (decreasing elasticity) $\Longleftrightarrow \log q$ is concave in $\log p$.

References
(1) Assumptions on demand curvature: geometric intuition

Marshall's second law (decreasing elasticity) $\Longleftrightarrow \log q$ is concave in $\log p$.

References

- Step \#1. Transform the problem.

For each Ai , map $D(p)$ to a measure $h(p)$ in the appropriate functional space.

- Step \#2. Show that welfare is "monotone" with respect to $h(p)$ under a partial order.

Mean-preserving spreads of $h(p)$ increase welfare.

- Step \#3. Derive the upper and lower bounds in terms of $h(p)$ and map back to $D(p)$.

Lower bound is attained when $h(p)$ is a step function (i.e., has 2 constant pieces). Upper bound is attained when $h(p)$ is constant (i.e., has 1 constant piece).

Alternative Proof: Step \#1 - Change of Variables

(A1) Decreasing Elasticity

Variable change:

$$
h(\pi):=\varepsilon\left(e^{\pi}\right), \quad \text { where } \pi=\log p
$$

Mapping:

$$
D(p)=q_{0} \exp \left[\int_{\log p_{0}}^{\log p} h(\pi) \mathrm{d} \pi\right]
$$

(A6) Convex Demand

Variable change:

$$
h(p):=D^{\prime}(p) .
$$

Mapping: $D(p)=D\left(p_{0}\right)+\int_{p_{0}}^{p} h(s) \mathrm{d} s$.

Transformation:

Transformation:

$$
\left\{\begin{array} { l }
{ \overline { \Delta C S } = q _ { 0 } \cdot \operatorname { m a x } _ { h \in \mathcal { E } } \int _ { p _ { 0 } } ^ { p _ { 1 } } \operatorname { e x p } [\int _ { \operatorname { l o g } p _ { 0 } } ^ { \operatorname { l o g } p } h (\pi) \mathrm { d } \pi] \mathrm { d } p , } \\
{ \underline { \Delta C S } = q _ { 0 } \cdot \operatorname { m i n } _ { h \in \mathcal { E } } \int _ { p _ { 0 } } ^ { p _ { 1 } } \operatorname { e x p } [\int _ { \operatorname { l o g } p _ { 0 } } ^ { \operatorname { l o g } p } h (\pi) \mathrm { d } \pi] \mathrm { d } p . }
\end{array} \left\{\begin{array}{l}
\overline{\Delta C S}=\max _{h \in \mathcal{E}} \int_{p_{0}}^{p_{1}}\left(p_{1}-p\right) h(p) \mathrm{d} p \\
\Delta C S=\min _{h \in \mathcal{E}} \int_{p_{0}}^{p_{1}}\left(p_{1}-p\right) h(p) \mathrm{d} p
\end{array}\right.\right.
$$

Alternative Proof: Step \#2 - Establishing a Partial Order

Example: (A6) Convex Demand

Definition: $h_{2} \succeq h_{1}$ if h_{2} is a mean-preserving spread of h_{1}

$$
h_{2} \succeq h_{1} \Longleftrightarrow \int_{p_{0}}^{p} h_{2}(s) \mathrm{d} s \geq \int_{p_{0}}^{p} h_{1}(s) \mathrm{d} s \quad \forall p \in\left[p_{0}, p_{1}\right] .
$$

- This defines a partial order on the family of $h(p)$
\Rightarrow Can think of this as second-order stochastic dominance
\Rightarrow For (A6), think of $h(p)$ as a CDF: increasing with a mean constraint:

$$
D\left(p_{0}\right)=q_{0} \quad \text { and } \quad D\left(p_{1}\right)=q_{1} \Longrightarrow \int_{p_{0}}^{p_{1}} h(p) \mathrm{d} p=q_{0}-q_{1} .
$$

Alternative Proof: Step \#2b - Connecting to Welfare

Example: (A6) Convex Demand

Lemma. The welfare objective is monotone in the partial order $\succeq:$

$$
h_{2} \succeq h_{1} \Longrightarrow \int_{p_{0}}^{p_{1}}\left(p_{1}-p\right) h_{2}(p) \mathrm{d} p \geq \int_{p_{0}}^{p_{1}}\left(p_{1}-p\right) h_{1}(p) \mathrm{d} p .
$$

Intuition: Risk-averse gamblers prefer contractions of lotteries

Corollary. The upper (resp., lower) bound is attained by iteratively applying mean-preserving spreads (resp., mean-preserving contractions) to $h(p)$.

Step \#3: deriving the upper bound

Consider the density that generates $h(p)$, where $h(p)$ is viewed as a CDF:

Step \#3: deriving the upper bound

Consider the density that generates $h(p)$, where $h(p)$ is viewed as a CDF:

Step \#3: deriving the upper bound

Consider the density that generates $h(p)$, where $h(p)$ is viewed as a CDF:

Consider the density that generates $h(p)$, where $h(p)$ is viewed as a CDF:

Step \#3: deriving the upper bound

Consider the density that generates $h(p)$, where $h(p)$ is viewed as a CDF:

Step \#3: deriving the upper bound

So the $h(p)$ that attains the upper bound on welfare is constant between p_{0} and p_{1} :

Step \#3: deriving the lower bound

Similarly, the $h(p)$ that attains the lower bound on welfare is a step function.

Step \#3: deriving the lower bound

Similarly, the $h(p)$ that attains the lower bound on welfare is a step function.

- Mapping back from $h(p)$ into demand curves $D(p)$:
$h(p)$ is constant $\Longleftrightarrow D^{\prime}(p)$ is constant $\Longleftrightarrow D(p)$ is linear.
- Mapping back from $h(p)$ into demand curves $D(p)$:

$$
h(p) \text { is constant } \Longleftrightarrow D^{\prime}(p) \text { is constant } \Longleftrightarrow D(p) \text { is linear. }
$$

- This proves the bounds for assumption (A6) (convexity of demand):
- The upper bound is attained by a 1-piece linear interpolation.
- The lower bound is attained by a 2-piece linear interpolation.
- Mapping back from $h(p)$ into demand curves $D(p)$:

$$
h(p) \text { is constant } \Longleftrightarrow D^{\prime}(p) \text { is constant } \Longleftrightarrow D(p) \text { is linear. }
$$

- This proves the bounds for assumption (A6) (convexity of demand):
- The upper bound is attained by a 1-piece linear interpolation.
- The lower bound is attained by a 2-piece linear interpolation.
- The same proof strategy works for all the other assumptions (with different $h(p)$).

Marshall's second law (decreasing elasticity) + elasticity lies in $[\underline{\varepsilon}, \bar{\varepsilon}]$

References

Marshall's second law (decreasing elasticity) + elasticity lies in $[\underline{\varepsilon}, \bar{\varepsilon}]$

(1) Assumptions on demand curvature: combining assumptions

Marshall's second law (decreasing elasticity) + elasticity lies in $[\underline{\varepsilon}, \bar{\varepsilon}]$

References

(1) Assumptions on demand curvature: combining assumptions

Marshall's second law (decreasing elasticity) + elasticity lies in $[\underline{\varepsilon}, \bar{\varepsilon}]$

Marshall's second law (decreasing elasticity) + elasticity lies in $[\underline{\varepsilon}, \bar{\varepsilon}]$

References

Marshall's second law (decreasing elasticity) + elasticity lies in $[\underline{\varepsilon}, \bar{\varepsilon}]$

(1) Assumptions on demand curvature: combining assumptions

Marshall's second law (decreasing elasticity) + convex demand

An analyst observes 3 points on a demand curve: $\left(p_{0}, q_{0}\right),\left(p_{1}, q_{1}\right)$, and $\left(p_{2}, q_{2}\right)$.
We assume that elasticity between p_{0} and p_{2} lie in the interval $[\underline{\varepsilon}, \bar{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from p_{0} to p_{2} ?

(3) Interpolating with more data: geometric intuition

Quantities demanded might be noisily observed:

$$
\begin{equation*}
q_{1}=D\left(p_{1}\right)+e \quad \text { where } e \sim \mathcal{N}\left(0, \sigma^{2} / N_{1}\right) \tag{1}
\end{equation*}
$$

Question. What is the $95 \% \mathrm{Cl}$ on the change in consumer surplus from p_{0} to p_{1} ?
\Rightarrow The bounds $\overline{\Delta C S}\left(q_{0}, q_{1}\right)$ and $\underline{\Delta C S}\left(q_{0}, q_{1}\right)$ are monotonic in q_{1}
\Rightarrow Obtain Cls by plugging in the Cls of q_{1}

